
foxgui

Simon Fox

foxgui ii

Copyright © CopyrightÂ©1993-2001 Foxysoft

foxgui iii

COLLABORATORS

TITLE :

foxgui

ACTION NAME DATE SIGNATURE

WRITTEN BY Simon Fox August 11, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

foxgui iv

Contents

1 foxgui 1

1.1 FoxGUI Documentation . 1

1.2 Drag/Drop support in FoxGUI applications . 2

1.3 Multi-threading in FoxGUI applications . 4

1.4 Adding your own gadgets to FoxGUI . 8

1.5 Important Notice. 10

1.6 Introduction to FoxGUI . 10

1.7 FoxGUI System Requirements . 11

1.8 FoxGUI compatibility . 11

1.9 Format of a FoxGUI program . 12

1.10 Suggestions? . 16

1.11 FoxGUI Bugs . 16

1.12 FoxGUI Wish list . 17

1.13 FoxGUI functions . 17

1.14 FoxGUI Image functions . 18

1.15 LoadBitMap function . 18

1.16 ShowBitMap function . 19

1.17 HideBitMap function . 20

1.18 FreeGuiBitMap function . 21

1.19 ScaleBitMap function . 22

1.20 RedrawBitMap function . 23

1.21 AttachBitMapToControl function . 24

1.22 ScreenColoursFromILBM function . 26

1.23 FoxGUI Progress Bar functions . 26

1.24 MakeProgressBar function . 27

1.25 SetProgress function . 28

1.26 SetProgressMax function . 29

1.27 FoxGUI Frame functions . 30

1.28 MakeFrame function . 31

1.29 SetFrameDragPointer function . 33

foxgui v

1.30 FoxGUI Timer functions . 34

1.31 AddTime function . 35

1.32 MakeTimer function . 35

1.33 PauseTimer function . 36

1.34 SetTime function . 37

1.35 StartTimer function . 38

1.36 StopTimer function . 39

1.37 UnpauseTimer function . 39

1.38 FoxGUI Screen functions . 40

1.39 ClonePublicScreen function . 40

1.40 GetScreenDetails function . 42

1.41 OpenGuiScreen function . 43

1.42 GetModeName function . 45

1.43 GetModeSize function . 46

1.44 GetNextAvailableDisplayMode function . 47

1.45 ShowDisplayList function . 47

1.46 FoxGUI Window functions . 48

1.47 OpenGuiWindow function . 50

1.48 SetFName function . 54

1.49 SetPath function . 55

1.50 ShowFileRequester function . 56

1.51 SleepPointer function . 58

1.52 UpdateFList function . 58

1.53 WakePointer function . 59

1.54 SetWindowLimits function . 59

1.55 WinBlankToEOL function . 60

1.56 WinClear function . 61

1.57 WinHideCursor function . 62

1.58 WinHome function . 63

1.59 WinPrint function . 63

1.60 WinPrintCol function . 65

1.61 WinPrintTab function . 66

1.62 WinShowCursor function . 67

1.63 WinTab function . 67

1.64 WinWrapOff function . 68

1.65 WinWrapOn function . 69

1.66 FoxGUI Menu functions . 70

1.67 AddMenu function . 71

1.68 AddMenuItem function . 72

foxgui vi

1.69 AddSubMenuItem function . 73

1.70 ClearMenus function . 74

1.71 DisableMenu function . 75

1.72 DisableMenuItem function . 75

1.73 DisableWinMenus function . 76

1.74 EnableMenu function . 77

1.75 EnableMenuItem function . 77

1.76 EnableWinMenus function . 78

1.77 IsMenuChecked function . 79

1.78 RemoveMenuItem function . 79

1.79 SetMenuChecked function . 80

1.80 SetWinMenuFn function . 81

1.81 ShareMenus function . 82

1.82 FoxGUI Button functions . 83

1.83 MakeButton function . 83

1.84 FoxGUI Boolean Gadget functions . 86

1.85 ActiveRadioButton function . 86

1.86 MakeRadioButton function . 87

1.87 SetTickBoxValue function . 89

1.88 TickBoxValue function . 89

1.89 MakeTickBox function . 90

1.90 FoxGUI Editbox functions . 91

1.91 GetEditBoxDouble function . 92

1.92 GetEditBoxInt function . 93

1.93 GetEditBoxText function . 94

1.94 MakeEditBox function . 94

1.95 RefreshEditBox function . 98

1.96 SetEditBoxCols function . 99

1.97 SetEditBoxDP function . 100

1.98 SetEditBoxDouble function . 101

1.99 SetEditBoxFocus function . 101

1.100SetEditBoxInt function . 102

1.101SetEditBoxText function . 103

1.102GetEditBoxID function . 104

1.103FoxGUI Tree Control functions . 104

1.104AddItem function . 105

1.105ClearTreeControl function . 107

1.106CloseItem function . 107

1.107FindTreeItem function . 108

foxgui vii

1.108ItemData function . 108

1.109ItemIsOpen function . 109

1.110MakeTreeControl function . 110

1.111SetTreeControlDragPointer function . 112

1.112OpenItem function . 113

1.113RemoveItem function . 114

1.114ReplaceTCItem function . 114

1.115SetTreeControlHiItem function . 115

1.116TCHiItem function . 116

1.117TCHiText function . 116

1.118TCItemText function . 117

1.119FoxGUI Listbox functions . 117

1.120AddListBoxItem function . 119

1.121AddListBoxTitle function . 120

1.122ClearListBoxItems function . 122

1.123ClearListBoxTabStops function . 122

1.124ClearListBoxTitles function . 123

1.125FindListText function . 124

1.126HiElem function . 125

1.127HiNum function . 126

1.128HiText function . 127

1.129InsertListBoxItem function . 128

1.130ListBoxRefresh function . 128

1.131ListColumnText function . 129

1.132MakeListBox function . 130

1.133SetListBoxDragPointer function . 133

1.134NoLines function . 134

1.135NoTitles function . 134

1.136ReplaceListBoxItem function . 135

1.137SetListBoxHiElem function . 136

1.138SetListBoxHiNum function . 136

1.139SetListBoxTabStopsArray function . 138

1.140SetListBoxTopNum function . 139

1.141SortListBox function . 140

1.142TopNum function . 141

1.143FoxGUI Drop-Down Listbox functions . 142

1.144AddToDDListBox function . 143

1.145AssociateDDListBox function . 144

1.146ClearDDListBox function . 145

foxgui viii

1.147MakeDDListBox function . 146

1.148MakeSubDDListBox function . 148

1.149RemoveFromDDListBox function . 150

1.150SetDDListBoxPopup function . 151

1.151SortDDListBox function . 152

1.152GetDDListBoxID function . 153

1.153GetDDListBoxText function . 154

1.154SetDDListBoxText function . 155

1.155FoxGUI Outputbox functions . 155

1.156MakeOutputBox function . 156

1.157SetOutputBoxCols function . 158

1.158SetOutputBoxDP function . 159

1.159SetOutputBoxDouble function . 160

1.160SetOutputBoxInt function . 160

1.161SetOutputBoxText function . 161

1.162GetOutputBoxID function . 162

1.163FoxGUI Tab Controls . 162

1.164MakeTabControlArray function . 163

1.165TabControlFrame function . 165

1.166FoxGUI Miscelaneous functions . 165

1.167CheckMessages function . 167

1.168Destroy function . 167

1.169DisableControl function . 168

1.170DrawLines function . 169

1.171EnableControl function . 169

1.172GetWindow function . 170

1.173GuiLoop function . 171

1.174GuiMalloc function . 172

1.175GuiMessage function . 173

1.176GuiTextLength function . 174

1.177Hide function . 175

1.178IntuiWindow function . 175

1.179LibVersion function . 176

1.180RegisterGadget function . 177

1.181SetDelay function . 178

1.182SetGuiPens function . 178

1.183SetGuiPensFromPubScreen function . 179

1.184SetPeriod function . 179

1.185SetPreText function . 180

foxgui ix

1.186SetPostText function . 181

1.187Show function . 181

1.188UnRegisterGadget function . 182

1.189WriteText function . 183

1.190GuiGetLastErr function . 183

1.191GuiFree macro . 184

1.192SetDefaultCols function . 184

1.193SetDefaultFont function . 185

1.194EnableM function . 186

1.195GetDefaultFontCopy function . 187

1.196DisableM function . 187

1.197DestroyM function . 188

1.198UseSafeMallocs function . 189

1.199Warnings and notes on the use of macros . 189

1.200The GUI_END and GUI_CONTINUE flags . 190

1.201The S_AUTO_SIZE flag . 190

1.202Using FoxGUI with C++ . 191

1.203What’s new in release 5.1? . 192

1.204What’s new in release 5.0? . 193

1.205What’s new in release 4.7? . 197

1.206What’s new in release 4.6? . 197

1.207What’s new in release 4.5? . 198

1.208What’s new in release 4.4? . 198

1.209What’s new in release 4.3? . 199

1.210What’s new in release 4.2? . 200

1.211What’s new in release 4.1? . 201

1.212What’s new in release 4.0? . 201

1.213What’s new in release 3.0? . 201

1.214What’s new in release 2.0? . 202

1.215... macro . 202

1.216... function . 203

foxgui 1 / 203

Chapter 1

foxgui

1.1 FoxGUI Documentation

FoxGUI - The Amiga Graphical User Interface Tools

Version 5.1

Copyright © 1993-2001 Foxysoft

Introduction

System requirements

Compatibility

Format of a FoxGUI program

Functions

Multi-threading

Drag/Drop functionality

Using FoxGUI with C++

Suggestions

Bugs (what bugs?)

Wish list

Adding your own gadgets to FoxGUI

What’s new in release 5.1?

What was new in release 5.0?

What was new in release 4.7?

foxgui 2 / 203

What was new in release 4.6?

What was new in release 4.5?

What was new in release 4.4?

What was new in release 4.3?

What was new in release 4.2?

What was new in release 4.1?

What was new in release 4.0?

What was new in release 3.0?

What was new in release 2.0?

Important notice.

1.2 Drag/Drop support in FoxGUI applications

What is drag/drop?

Drag/drop is a way of allowing a user to move data around the user
interface in a very visual manner. It’s achieved by pointing the mouse at
the control/data/image that you want to drag, pressing down and holding
down the left mouse button, moving the mouse (with the button still held
down) to the point at which you wish to drop the control/data/image and
then letting go of the mouse button.

Of course, a user shouldn’t really expect to be able to pick up any object
on the screen and drag it to just anywhere they like and drag/drop isn’t
always the most appropriate way of achieving things but it’s an
increasingly popular option. Here’s an example of a situation in which
drag/drop might be suitable.

An application was been written to allow customers to order components from
a manufacturer. Having reached the screen showing details of the
components available (in a list-box for example), the user now has to
select which items she wants to order. One way to do this is to have
another list-box on the screen showing a list of components ordered. To
order a component, the user could drag an item from the available
components list-box into the components ordered list-box. If the
application is well written it should have alternative ways of doing the
same thing, for example double-clicking on an item in the available
components list might copy that item into the items ordered list. There
might also be an "order component" button on the screen which, when clicked
on copies the currently hilighted component in the available components
list into the ordered components list.

Not all FoxGUI controls are drag/drop aware. The chart below shows which
controls have drag-drop functionality:

foxgui 3 / 203

Control Functions supported
------- -------------------
Tree Controls DRAG and DROP
List Boxes DRAG and DROP
Frames DRAG and DROP
Windows DROP only.

How do I use it?

When you create a FoxGUI control you usually pass a "flags" parameter which
allows various options to be specified. List boxes, frames and windows have
drag/drop flags available which specify whether or not data can be dragged
out of or dropped into the control. The flags are summarised below.

Control Drag flag Drop flag
------- --------- ---------
Tree Control TC_DRAG TC_DROP
List Box LB_DRAG LB_DROP
Frame FM_DRAG FM_DROP
Window - GW_DROP

Although the example application described above allows data to be dragged
from one list box into another it is important to realise that data dragged
from any control can be dropped into any other drag/drop aware control
which was created with the relevant flags set. The originating and
receiving controls need not be of the same type. If a control (a list box
for example) is created with the LB_DRAG and LB_DROP flags specified then
data can be:

* Dragged from that list box to another drag/drop control.

* Dragged from other drag/drop controls into that list box.

* Dragged from that list box into itself!

When you specify drag or drop flags for a control you will also have to
create a function which will handle the drag and drop (and possibly other)
events. More details about these functions are described in the

MakeListBox
,
MakeFrame

,
OpenGuiWindow
and
MakeTreeControl

function descriptions elsewhere in this documentation but some ←↩
general

principles are described below.

Code which is called when a drag begins is typically used to set a pointer
to the data being dragged. That pointer will be stored in memory
associated with the object that the data is dragged from and can point to
absolutely anything you want it to (a struct, an array of items, a FoxGUI
control, ... anything). Your drag event should really do nothing other
than set that pointer but it can do other things as long as they are FAST!
The drag event occurs just as the user starts to drag the data so if the

foxgui 4 / 203

function takes too long it will hold up the drop function when the user
drops the data.

Code which is called when a drop event occurs will typically do something
with the data dropped into the control. The drop event function will be
passed a pointer which was initialised by the drag event function
containing information about what has been dragged. When writing a
function to handle a drop event it’s worth considering what to do if the
data dropped onto the control was dragged from the same control (of course
this needn’t be considered if the control wasn’t created with the relevant
flag specified to allow data to be dragged from it). It’s worth also
considering that if the control also responds to left mouse button clicks
then a slight movement of the mouse between pressing and releasing the
button will cause up to three events to occur - the left click event, the
drag event and the drop event (assuming that all three are enabled for that
control). Often, data dragged from the same control should just be ignored
but you will need to put code in your drop event to filter out such data.

Drag and drop event functions should either return
GUI_END
or

GUI_CONTINUE
but it should be remembered that in the case of the DRAG

event, the return value will be ignored. This makes it impossible to
trigger the end of a FoxGUI program at the point a user starts to drag
data. Personally I think that would be very bad practise anyway and I
can’t see why you would want to do it. There are, however, other
limitations on what you should do in a drag event.

Drag event limitations

You should not create or destroy FoxGUI controls from within a drag event
function (this includes opening and closing windows). There are no such
limitations for the DROP event.

1.3 Multi-threading in FoxGUI applications

How to Multi-thread

From release 4.1 onwards, FoxGUI has limited support for multi-threading.
What this means is that while your program is performing a lengthy task the
user is still free to use other controls in your application and have them
respond in the normal way. This is very simple to arrange. Here’s an
example.

Let’s suppose that when the user clicks a certain button in your
application, a list of files that the user has selected will be copied from
one disk to another. The user may have selected many files and this might
take some time. Other buttons in your application might show the contents
of a disk or delete a file for example. There’s no reason why the user
shouldn’t be able to do either of these things while the program is copying
the original set of files that the user selected.

foxgui 5 / 203

Here’s the function that copies the files:

int CopyButtFn(PushButton *copy)
{

int NumFiles = GetNumFilesToCopy();
char *Filename = GetFirstFileName();

while (Filename != NULL)
{

CopyFile(Filename);
Filename = GetNextFileName();

}

return GUI_CONTINUE;
}

Normally when this function runs, nothing else can happen in your
application until this function returns. Any other buttons you click on
won’t respond until the function has finished.

FoxGUI now has a new function
CheckMessages

. When you call
CheckMessages() FoxGUI will immediately check whether there are any
outstanding messages that it should respond to. These could be button
clicks, scroll-bar drags, timer events, key presses - anything a user can
do that your program should respond to. FoxGUI will process any
outstanding events it finds and then the CheckMessages function will
return. We can make use of this to allow multi-threading by changing our
example above as follows:

int CopyButtFn(PushButton *copy)
{

int NumFiles = GetNumFilesToCopy();
char *Filename = GetFirstFileName();

while (Filename != NULL)
{

CopyFile(Filename);
Filename = GetNextFileName();
CheckMessages();

}

return GUI_CONTINUE;
}

Now after each file is copied the program will catch up with any other
tasks it has been asked to perform before copying the next file.

The pitfalls

Can multi-threading really be that simple? Well, almost. There are one or
two pitfalls that are fairly easily avoided but may not be instantly
obvious. There are probably more that should be listed here that I haven’t
thought of yet so I’m sure that over time this list will get longer.

foxgui 6 / 203

Close Window functions

It may be that your main task (in the example above this would be the
CopyButtFn function) opens a window (you might want to have a progress bar
in the window which displays the percentage of the task that has
completed). In this case the while loop in the example above would also
contain calls to the SetProgress function. If the window has a close
button then it would be possible for the user to click the close button
before the task was complete. The regular calls to CheckMessages() would
ensure that in this case the window will get closed before the task has
finished. Closing the window will obviously mean destroying the progress
bar so after each subsequent file is copied, the SetProgress function will
be passed a pointer to a progress bar which has already been destroyed.
This is likely to cause severe problems - probably resulting in the
computer crashing.

Obviously this problem could be solved by not having a progress bar in the
window. Without the progress bar, you may not even need the task to open a
window (as in the example above). This is not a very good solution. It’s
good practice to have some sort of indication of progress when a lengthy
task starts otherwise how will the user know that anything’s happening?

There are many better solutions to this problem:

* Don’t have a close button on the window. The program could automatically
close the window once the task is complete. If the user doesn’t want the
window in the way they can always send it behind other windows.

* Have a close function for the window which checks whether the process is
complete and doesn’t allow the user to close the window until it is. The
process could set a flag at the start and reset it at the end so that the
close function could determine whether the process is still running and
prevent you from closing the window if it is.

* Have the window’s close function set a flag to say that the window has
been closed. Modify the main function so that it doesn’t call functions
(such as SetProgress) which affect controls in the window if the window has
already closed. If the process relies on the window being open for reasons
other than displaying the progress then this may not be an option.

Repeating the task

Once the main task is underway, regular calls to CheckMessages() mean that
the user could start the same task a second time in the same way that they
started the first. If for example the task is triggered by clicking on a
button, there’s nothing to stop the user from clicking the button again and
starting a second incarnation of the same task. This may be no problem at
all or a complete disaster depending on what the task actually does and
exactly how it is coded.

If you do not want the task to be able to start multiple times then there
are two simple options to prevent it. The main task could disable
whichever button or other control it is that launches the task until the
task is complete. Alternatively, it might be appropriate to put the window
that contains that control to sleep (by calling the

foxgui 7 / 203

SleepPointer
function). Either method will prevent the user from launching the ←↩

task
twice simultaneously.

If you do want to be able to launch the task multiple times simultaneously
then this can be handled as long as any windows opened by the task and any
controls that are created in them are declared locally in the function that
launches the task so that each incarnation of the task has it’s own copy of
those variables. This is illustrated below. In this example, the task is
launced from a button whose click function is shown.

The following would work:

int LaunchTaskButtFn(PushButton *pb)
{

int i;
GuiWindow *TaskWindow = OpenGuiWindow(...);
ProgressBar *ProgBar = NULL;

if (TaskWindow != NULL)
ProgBar = MakeProgressBar(TaskWindow, ...);

// long task...
for (i = 1; i <= 100; i++)
{

// Do Task Stuff
// ...

// Update progress bar
if (ProgBar != NULL)

SetProgress(ProgBar, i);
}
if (ProgBar != NULL)

Destroy(ProgBar, FALSE);
if (TaskWindow != NULL)

CloseGuiWindow(TaskWindow);
return GUI_CONTINUE;

}

The following would be disastrous:

GuiWindow *TaskWindow;
ProgressBar *ProgBar;

int LaunchTaskButtFn(PushButton *pb)
{

int i;
TaskWindow = OpenGuiWindow(...);
ProgBar = NULL;

if (TaskWindow != NULL)
ProgBar = MakeProgressBar(TaskWindow, ...);

// long task...
for (i = 1; i <= 100; i++)
{

foxgui 8 / 203

// Do Task Stuff
// ...

// Update progress bar
if (ProgBar != NULL)

SetProgress(ProgBar, i);
}
if (ProgBar != NULL)

Destroy(ProgBar, FALSE);
if (TaskWindow != NULL)

CloseGuiWindow(TaskWindow);
return GUI_CONTINUE;

}

Limitations of multi-threading in FoxGUI

The major limitation is that the CheckMessages function will not return
until all pending messages have been dealt with. This means that if the
user triggers a long process and then starts another long process before
the first has finished, the first process will not continue until the
second has finished even if the second process contains regular calls to
CheckMessages. CheckMessages exists to allow the user to perform short
tasks while a long task is underway, not to allow multiple long tasks to
progress simultaneously.

1.4 Adding your own gadgets to FoxGUI

Hopefully, FoxGUI will one day be able to support bolt-ons so that
programmers can build their own gadgets and fully integrate them with
FoxGUI. I have already laid the ground work for this but the finished
product is still some way off. In the mean time I thought it important
that you should be able to devise your own intuition gadgets and use them
alongside FoxGUI gadgets in the same window so I have added the capability
to do this but there are two limitations:

* FoxGUI gadgets can only be created in FoxGUI windows.

* You cannot manage your own message loop - FoxGUI always does that for
you. (To my mind this is an advantage rather than a limitation because
it saves you, the programmer, a lot of work but no doubt someone will
come up with a genuine reason for wanting to handle their own).

So, how do I do it?

It’s easy. There’s nothing to stop you from creating your own windows in a
FoxGUI program - either right at the start (before you call GuiLoop) or in
the event function of a gadget (either a FoxGUI gadget or one of your own)
and of course there’s nothing to stop you from creating your own gadgets in
these windows. The problem is, since FoxGUI handles the message loop for
you (in the GuiLoop function) how do you know when an event has occurred
that affects one of your gadgets? Well, all you have to do is register
your gadget with FoxGUI and then, whenever FoxGUI receives an IntuiMessage
(a message from Intuition) which refers to your gadget, a function that you
specify will be called. If you create a gadget in a non-FoxGUI window, you

foxgui 9 / 203

register it by calling the
RegisterGadget
function as follows :

RegisterGadget(MyGadget, NULL, MyFunction);

where MyGadget is a pointer to the gadget (struct Gadget *) and MyFunction
is a pointer to a function of your own which will be called whenever
something happens to your gadget. The function you specify should have the
following prototype :

int MyFunction(struct Gadget *gad, struct IntuiMessage *message);

The function will be passed a pointer to the gadget in question and a
pointer to the actual IntuiMessage that Intuition sent to FoxGUI. Please
note that because this is the original message (not a copy of it) it is
important that you don’t change it’s contents in any way. It is also
very important that you ReplyMsg() the message as soon as you have
finished with it exactly as you would normally do if you were handling your
own message loop (FoxGUI will not do this for you). The function should
return either

GUI_CONTINUE or GUI_END
which are described in detail

elsewhere in this manual.

You can register your gadget with FoxGUI either before or after adding it
to the window (which you can do using the normal intuition function
AddGadget).

If you want to create a gadget in a FoxGUI window you will first need to
get a pointer to the Intuition window structure. You do this by calling
the function

IntuiWindow
and passing a pointer to the GuiWindow in which

you want to create the gadget e.g.

struct Window *MyWindow = IntuiWindow(MyGuiWindow);

You now have all the information you need to create your intuition gadget
and add it to the FoxGUI window. Be careful to ensure that it doesn’t
overlap any other gadgets in the window - if the window is resizable and
contains auto-sizing FoxGUI gadgets then this will be a problem because at
the moment there is no way for your program to find out when a FoxGUI
window gets resized.

Now you need to register your new gadget with FoxGUI which you do by
calling the

RegisterGadget
function. Unlike registering a gadget in a

non-FoxGUI window, you also need to pass a pointer to the FoxGUI window in
which you have placed (or are about to place) the gadget as below:

RegisterGadget(MyGadget, MyGuiWindow, MyFunction);

When you destroy your gadget (remember that FoxGUI won’t do that for you)
you must call the

UnRegisterGadget

foxgui 10 / 203

function so that FoxGUI knows that it
doesn’t have to deal with it any more.

1.5 Important Notice.

I make every effort to ensure that if the libraries are used correctly,
they will not crash your system or do any other damage. No release is made
without first running all of my example FoxGUI programs while enforcer and
mungwall are checking that the system is clean but for my own protection, I
would like to add that:

The author will not be liable for any damage arising from the failure
of this program to perform as described, or any destruction of other
programs or data residing on a system attempting to run the program. While
the author knows of no damaging errors, the user of this program uses it at
his or her own risk.

1.6 Introduction to FoxGUI

What is FoxGUI?

FoxGUI is a shared library of functions that can be called by your C programs
(and possibly other languages too if you have the know how) to make a whole
host of graphical user interface (GUI) objects very quickly and easily.
The objects include screens, windows, buttons, list boxes, edit boxes,
drop-down list boxes, menus, file requesters and more. You make use of the
objects by calling functions to create them. The functions take all of the
necessary parameters for you to customise the objects for your application,
including pointers to your own functions which will be called when certain
events occur. You then call the GuiLoop function which processes all of
the events associated with your objects, calling your functions when
necessary. Simple.

For example, the OpenGuiWindow function opens an intuition window. It
takes parameters which specify the size and position of the window, the
screen that it will open on, whether or not it is dragable, whether it has
a close gadget, whether you want a console in the window, a pointer to a
function to call when events related to your window occur and many more
things besides.

The MakeButton function creates a button! The parameters specify the
window which the button will appear in, it’s size and position, a
user-defined function to call when the button is clicked, whether this
function should be called repeatedly if the button is held down etc etc.

Basically, FoxGUI is there so that you as an Amiga programmer can spend
more time being inventive and less time writing the run-of-the-mill stuff
that lives inside every GUI program. All of the functions are supplied in
a shared library.

Why should I use FoxGUI?

foxgui 11 / 203

Good question. There are other GUI tools available for the Amiga and I
guess it really comes down to which one you like. I only have experience
of one other (MUI) and I can say without any hesitation that it’s main
advantage over MUI is speed. It’s much faster than MUI but
doesn’t have quite as many gadgets yet. As for the others? Well, as I
say, I haven’t used them so I’m not sure. When I started writing this (in
1993) there weren’t so many around, in fact I didn’t know of any. To help
you decide whether FoxGUI is of any use to you, here are some of the things
that may distinguish it from other GUIs.

* While making use of functions within the latest versions of the Amiga OS
where possible, almost all FoxGUI functions operate on any Amiga so if
your code needs to be backwards compatible it can be. You compile one
program, it works on any Amiga.

* Unlike MUI, the user of your programs doesn’t need to know anything
about the GUI. They don’t need anything special installed (because you
can freely distribute the library with your programs) and don’t
need to pay to register the GUI. It’s completely invisible to them.

* It’s fast!

* It’s free!

1.7 FoxGUI System Requirements

FoxGUI system requirements

FoxGUI is not very memory hungry so the amount of memory required really
depends on the size of your application. It’s also quite fast so there’s
no problem running FoxGUI applications on an unexpanded A500 (I do this all
of the time to ensure that any changes I make are backward compatible).

Now that FoxGUI is a shared library (it used to be a link library) there
should no-longer be any restriction on what compiler you use in order to
create your FoxGUI applications. In fact, there shouldn’t even be a
restriction on what language you write your programs in. All of the
examples in this documentation and on the FoxGUI website are written in C
or C++ and will compile with SAS/C 6.58 but should require minimal change
to compile them using an alternative C compiler.

See also:
Compatibility

1.8 FoxGUI compatibility

FoxGUI compatibility

I have made every effort to make FoxGUI run on every Amiga ever sold but
the earliest Amiga I have access to is a late A500 so there may be Amigas

foxgui 12 / 203

out there that FoxGUI is incompatible with.

This doesn’t mean that I have limited FoxGUI to what is achievable on an
unexpanded A500. FoxGUI adapts to the machine that it is run on so that
you only have to compile one version of your program and it will work on
any Amiga (as long as your code doesn’t rely on a later OS)! For example,
using FoxGUI, drop down list boxes are available on any Amiga but on an
A500+ or above, they can get the focus in the same way that edit boxes can.
Once they have the focus you can press a key on the keyboard and if there
is an entry in the list that starts with that character it will be selected
for you. On an A500, the same program would have the same list box
containing the same items but the list box cannot get focus so selection
can only be performed by clicking the drop button and selecting using the
mouse.

Limitations of each function and how they differ between Amiga models are
included in the

functions
section.

1.9 Format of a FoxGUI program

Format of a FoxGUI program

The best way to describe how to write a FoxGUI program is to give a
simple example. The code below opens a FoxGUI window on a FoxGUI screen
and asks a question which can be answered by selecting a response from a
drop-down list box. The program will then respond in an appropriate manner
to your response. You can exit the program at any time by pressing the
Okay button in the window or by clicking the window’s close gadget. The
code is heavily commented so that you can hopefully understand what is going
on. Assuming you have reasonable knowledge of C, you should find it very
simple.

#include <clib/exec_protos.h>
#include "FoxGUI.h"
#include "FoxGUIPragma.h"

struct Library *FUIBase;
GuiScreen *GreetingsScreen = NULL;
GuiWindow *GreetingsWindow = NULL;

// CALLBACK is defined in FoxGUI.h

int CALLBACK OkayButtFn(PushButton *pb)
{

/* We only have one button in our application so we don’t need to check which ←↩
one has been clicked.
We want the Okay button to quit the program so all we have to do is return ←↩

GUI_END and this will
cause GuiLoop() to return. Our code at the end of the main() function (←↩

after the call to GuiLoop)
will then clear everything up for us. */

return GUI_END;

foxgui 13 / 203

}

int CALLBACK GreetingsWinFn(GuiWindow *win, int event, int x, int y, void *data)
{

if (event == GW_CLOSE)
{

/* We only have one window. The fact that we are here means that it’s close ←↩
gadget has

been clicked. We want the close gadget function to actually end the program ←↩
so rather than

closing the window here, we’ll just return GUI_END | GUI_CANCEL (to cause ←↩
GuiLoop() to exit

without FoxGUI closing the window for us) and our cleanup code at the end of ←↩
the main()

function will close this window as well as the screen. */
return GUI_END | GUI_CANCEL;

}
/* We don’t want to do anything special for other window events so just return ←↩

GUI_CONTINUE
to return control to FoxGUI. */

return GUI_CONTINUE;
}

BOOL CALLBACK ResponseBoxFn(DDListBox *lb)
{

/* GetDDListBoxText returns a pointer to the actual buffer used by the drop- ←↩
down list box so we
mustn’t change it directly but it’s okay to look at it! */

char *response = GetDDListBoxText(lb);

/* Fortunately, all of our entries in the list box begin with different letters ←↩
so instead of

using strcmp() to work out what has been selected, we can just look at the ←↩
first letter of the

text in the drop-down list box. */
switch (response[0])
{

case ’F’: // "Fine thanks."
/* The GuiMessage function displays a modal message to the user. Modal ←↩

means that the user
won’t be able to access any gadgets on other windows or screens in ←↩

this application
until they have responded to the message which they can do either by ←↩

clicking on the Okay
button or by pressing the O or return keys which are hot-keys for the ←↩

button. */
GuiMessage(GreetingsScreen, "I’m glad to hear it.", "FoxGUI", 2, 1, ←↩

GM_OKAY);
break;

case ’T’: // "Terrible!"
GuiMessage(GreetingsScreen, "I’m sorry to hear that!", "FoxGUI", 2, 1, ←↩

GM_OKAY);
break;

case ’N’: // "None of your business!"
GuiMessage(GreetingsScreen, "Well there’s no need to be rude!", "FoxGUI", ←↩

2, 1, GM_OKAY);
}

foxgui 14 / 203

return TRUE;
}

/* This function closes all of the things that we opened in main() to free up the ←↩
memory and other
system resources because our program is about to exit. */

static int CloseDown(int retval)
{

if (GreetingsWindow)
{

/* ResponseBox is declared in main() so we don’t have a pointer to it here ←↩
and so we can’t
use the Destroy() function. However, we can destroy it by calling ←↩

DestroyM() with a
pointer to our window and a type of DDListBoxTypeID. That will destroy ←↩

any drop-down list
boxes in that window and is actually much more convenient because it ←↩

saves us from checking
whether the drop-down list box was created successfully in the first ←↩

place (this function
will be called if the MakeDDListBox() function in main() fails). Exactly ←↩

the same is true
of our button (OkayButton) so we use the DestroyM() function again ←↩

instead of the Destroy()
function. */

DestroyM(DDListBoxTypeID, GreetingsWindow, FALSE);
DestroyM(ButtonTypeID, GreetingsWindow, FALSE);

/* Close the window we created in the main() function. */
Destroy(GreetingsWindow, TRUE);

}

/* Close our screen (if it opened successfully). */

if (GreetingsScreen)
Destroy(GreetingsScreen, TRUE);

/* Free up all resources used by the Gui */

CloseLibrary(FUIBase);

return retval;
}

int main(void)
{

DDListBox *ResponseBox = NULL;
PushButton *OkayButton = NULL;

/* Initialise FoxGUI. It is essential that this is done before any other calls ←↩
are made to FoxGUI

functions. */

FUIBase = OpenLibrary("FoxGUI.library", 0);
if (!FUIBase)

foxgui 15 / 203

return 1;

/* Open a GuiScreen to run our application on. We’ll just give it two ←↩
bitplanes which allows
four colours - plenty for such a simple program. */

if ((GreetingsScreen = OpenGuiScreen(2, 2, 1, "Welcome to FoxGUI", NULL, 0, ←↩
NULL, 0, 0, NULL, NULL)) == NULL)
return CloseDown(1);

/* Open the GuiWindow to create our controls in. By supplying the GW_CLOSE ←↩
parameter we ensure that
the window has a close gadget and by supplying a pointer to our ←↩

GreetingsWinFn() (defined
above) we ensure that if the user clicks the close gadget, FoxGUI won’t just ←↩

close the window
for us but will call our function instead and do what ever our function ←↩

tells it to do! */

if ((GreetingsWindow = OpenGuiWindow(GreetingsScreen, 100, 40, 400, 100, 2, 1, ←↩
"Greetings!",

GW_DRAG | GW_CLOSE, GreetingsWinFn, NULL)) == NULL)
return CloseDown(1);

/* Make the drop-down list box that the user will use to select a response to ←↩
the question. Notice
that I’ve specified the question itself (How are you today?) as the PreText ←↩

for the drop-
down list. There are many other ways I could have done this (using an ←↩

output box or using a
console and writing text directly to the window or even by bypassing FoxGUI ←↩

altogether and
allocating my own IntuiText and writing it to the window’s rastport) but ←↩

since I wanted the text
to be to the left of the list box, this was by far the easiest method. We’ ←↩

ll add the possible
responses into the list box in a moment. */

if ((ResponseBox = MakeDDListBox(GreetingsWindow, 160, 30, 190, 22, 3, 0,
ResponseBoxFn, THREED, NULL)) == NULL)

return CloseDown(1);
SetPreText(ResponseBox, "How are you today?");

/* Make the Okay button which the user can click to quit the application. ←↩
Notice that we pass a
pointer to our OkayButtFn() defined above which will get called when the ←↩

user clicks the okay
button. Notice also that I’ve set the hot-key to ’O’ and underlined the O ←↩

of Okay so that the
user knows what the hot-key is. I’ve also passed the BN_OKAY flag to tell ←↩

FoxGUI to allow the
return key as an extra hot-key for this button. */

if ((OkayButton = MakeButton(GreetingsWindow, "_Okay", 170, 80, 60, 14, ’O’, ←↩
NULL, OkayButtFn,

BN_CLEAR | BN_STD | BN_OKAY, NULL)) == NULL)
return CloseDown(1);

foxgui 16 / 203

/* Add the three possible responses to our drop-down list box. */

AddToDDListBox(ResponseBox, "Fine thanks");
AddToDDListBox(ResponseBox, "Terrible!");
AddToDDListBox(ResponseBox, "None of your business!");

GuiLoop();

/* It is important to free up any memory we have used by destroying all of the ←↩
FoxGUI gadgets we
have created. All of this is done in the CloseDown() function. */

return CloseDown(0);
}

1.10 Suggestions?

Suggestions?

If you have any suggestions for improvements you would like to see in the
next release of FoxGUI, or if you have any other need to contact me I can
be reached at simon@foxysoft.co.uk. Please don’t expect immediate replies
as I’m usually too busy improving FoxGUI to actually check my mail! I will
get back to you as soon as I can.

Also, keep an eye on the web page. Details of forthcoming releases and
improvements that are planned are listed there:

http://www.foxysoft.co.uk/

1.11 FoxGUI Bugs

Bugs in the current release of FoxGUI

The following problems are known to exist in the current release. If you
find any others please Email me at: simon@foxysoft.co.uk

* The GW_CONSOLE flag to the function OpenGuiWindow currently doesn’t
work. I have had problems implementing consoles in the shared library
version of FoxGUI but I hope to have this cleared up soon.

* If you create a frame (using the function MakeFrame) and you specify the
FM_DRAG option but do not set your own custom drag pointer using the
function SetFrameDragPointer() then dragging may cause a crash. You can
overcome this by putting the following line of code immediately after
your call to MakeFrame:

myFrame->DragPointer = NULL; // Fix the bug in MakeFrame

This bug will be fixed in the next release.

foxgui 17 / 203

Keep your eye on the Web page for info about future releases
(http://www.foxysoft.co.uk/).

1.12 FoxGUI Wish list

What’s next for FoxGUI

There is still much that can be done to improve FoxGUI. There are plenty
of things that I intend to implement as soon as I get time and just so that
you know what’s coming soon, I’ve outlined them below. They are in
approximate order of importance but subject to change.

* Reinstate the console functions.

* Improvements to frames

* Pop-up menus.

1.13 FoxGUI functions

FoxGUI Functions

Since there are rather a lot of FoxGUI functions, I have broken them down
into sections divided by the object which they affect. Each section
contains a description of the object type and full descriptions of each
function available for objects of that type :-

Screens

Windows

Menus

Tab controls

Frames

Buttons

Boolean gadgets

Edit boxes

List boxes

Tree Controls

Drop-down list boxes

Output boxes

Timers

foxgui 18 / 203

Progress Bars

Images

Miscelaneous

1.14 FoxGUI Image functions

FoxGUI has a number of functions for manipulating ILBM images. ←↩
Any ILBM

image can be loaded, shown in a FoxGUI window, attached to a button or
frame etc.

All of the image functions require IFFparse.library. Two versions of
IFFparse.library are available - one will have been on your workbench
disk if you bought a V39 Amiga (e.g. an Amiga 1200) which only works on
Amigas with V39 and above. The other works on all Amigas all the way
back to an A500 with workbench 1.3 but was only supplied with Amigas from
V37 onwards so if you have an older Amiga then you will need to get hold of
that version. Unfortunately I don’t have a license to distribute it so I
can’t supply it with FoxGUI but you may find that you already have it
supplied with some other piece of software.

If you make use of the FoxGUI image functions in your code and someone
attempts to run the code on an Amiga without IFFparse library, the program
won’t fail or crash or do anything nasty - the user just won’t see your
images.

The following image functions are currently available :-

LoadBitMap

ShowBitMap

HideBitMap

FreeGuiBitMap

ScaleBitMap

RedrawBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.15 LoadBitMap function

foxgui 19 / 203

Function prototype:

GuiBitMap *LoadBitMap(char *fname);

Description:

Loads an ILBM image with the specified path and filename and returns a
GuiBitMap structure which can be passed as a parameter to other FoxGUI
image functions.

Parameters:

fname: The full or relative path and filename of the ILBM image to
load.

Returns:

If successful, a pointer to a GuiBitMap structure containing the image
loaded, otherwise NULL. This function will fail if the IFFparse library
could not be opened.

Known bugs:

None.

See also:

ShowBitMap

HideBitMap

FreeGuiBitMap

ScaleBitMap

RedrawBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.16 ShowBitMap function

Function prototype:

BitMapInstance *ShowBitMap(GuiBitMap *bm, GuiWindow *w, unsigned short
x, unsigned short y, short flags);

Description:

Displays a previously loaded image in a FoxGUI window. Note that the
image won’t look as it was intended to unless your screen is deep enough

foxgui 20 / 203

to show the correct number of colours for the image and the screen’s
pallette matches the images pallette (see

ScreenColoursFromILBM
and

OpenGuiScreen
).

Parameters:

bm: A pointer to a GuiBitMap structure as returned by the

LoadBitMap
function.

w: A pointer to the FoxGUI window in which to display the image.
x, y: The coordinates (in pixels) within the window for the top left

hand corner of the image.
flags: The only flag currently available for this function is

BM_OVERLAY. If this is specified, any pixels within the image
which don’t contain any data (i.e. are transparent) won’t be
drawn. This allows an image to be shown over the top of another
and the bottom image to be seen "through" the top one where it is
transparent. If this flag is not specified then every pixel in
the image will be drawn so anything currently drawn in the window
will be overwritten if it falls within the bounds of the image.

Returns:

If successful, a pointer to a BitMapInstance is returned. Keep a copy
of this - you will need it to free the memory used by the image or to
hide or refresh it.

Known bugs:

None.

See also:

LoadBitMap

HideBitMap

FreeGuiBitMap

ScaleBitMap

RedrawBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.17 HideBitMap function

foxgui 21 / 203

Function prototype:

BOOL HideBitMap(BitMapInstance *bmi);

Description:

Hides an image previously displayed in a window with the
ShowBitMap

function and free’s the memory used by the BitMapInstance. You ←↩
should

never refer to a BitMapInstance when it has been hidden as that memory
will have been free’d - if you show the image again (using ShowBitMap)
you will be given a new BitMapInstance. If the image was shown on top
of other images as an overlay, you will need to refresh the other images
using

RedrawBitMap
.

Parameters:

bmi: A pointer to the BitMapInstance returned by ShowBitMap when the
image was drawn.

Returns:

TRUE if the image was successfully hidden, FALSE otherwise.

Known bugs:

None.

See also:

LoadBitMap

ShowBitMap

FreeGuiBitMap

ScaleBitMap

RedrawBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.18 FreeGuiBitMap function

Function prototype:

BOOL FreeGuiBitMap(GuiBitMap *bm);

foxgui 22 / 203

Description:

This function free’s the memory used by an image that was loaded with
the

LoadBitMap
function. You should not free a GuiBitMap while it is

displayed (other than attached to a control). Only call this function
when you have completely finished with the image.

Parameters:

bm: A pointer to the GuiBitMap as returned by the LoadBitMap function.

Returns:

TRUE if the image was successfully free’d. FALSE otherwise.

Known bugs:

None.

See also:

LoadBitMap

ShowBitMap

HideBitMap

ScaleBitMap

RedrawBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.19 ScaleBitMap function

Function prototype:

GuiBitMap *ScaleBitMap(GuiBitMap *source, unsigned short destwidth,
unsigned short destheight);

Description:

Scales an image loaded with
LoadBitMap
to the size specified. Note

that this function requires graphics library V36 or above and will fail
when used on V35 or below.

foxgui 23 / 203

Parameters:

source: A pointer to a GuiBitMap to scale.
destwidth: The target width in pixels of the scaled image.

destheight: The target height in pixels of the scaled image.

Returns:

If successful, a pointer to a new GuiBitMap is returned which is a
scaled version of the one supplied. Note that if the original image is
not displayed or attached to a control then the original need not be
kept after calling this function (i.e. you can free it with a call to

FreeGuiBitMap
). NULL is returned if this function fails.

Known bugs:

None.

See also:

LoadBitMap

ShowBitMap

HideBitMap

FreeGuiBitMap

RedrawBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.20 RedrawBitMap function

Function prototype:

BOOL RedrawBitMap(BitMapInstance *bmi);

Description:

Redraws the BitMapInstance supplied. If the image was originally drawn
as an overlay then the refresh will also draw it as an overlay.

Parameters:

A pointer to a BitMapInstance as returned by
ShowBitMap

.

foxgui 24 / 203

Returns:

TRUE if successful, FALSE otherwise.

Known bugs:

None.

See also:

LoadBitMap

ShowBitMap

HideBitMap

FreeGuiBitMap

ScaleBitMap

AttachBitMapToControl

ScreenColoursFromILBM

1.21 AttachBitMapToControl function

Function prototype:

BOOL AttachBitMapToControl(GuiBitMap *bm, void *control, short left,
short top, short width, short height, int flags);

Description:

Attaches an image (as loaded with
LoadBitMap

) or part of an image to a
FoxGUI button or frame. Many images can be attached to the same control
with multiple calls to this function.

Parameters:

bm: A pointer to the GuiBitMap image to attach to the control.
Note that a copy is made of the required portion of the image
so there is no need to maintain the original after calling this
function if it is not needed elsewhere.

control: A pointer to a FoxGUI frame or button to which to attach the
image.

left, top, width, height:
These specify the portion of the image to attach to the
control. left and top specify the coordinates within the image
of the top left corner of the portion of the image to attach to
the control. width and height specify the width and height of
the portion that you want to attach (in pixels). width or

foxgui 25 / 203

height can be set to -1 which means the rest of the
width/height of the image. For example, to attach the whole
image to the control, specify left, top, width and height as 0,
0, -1 and -1 respectively. To attach all of the image except
the top 5 rows and the left 3 columns, specify 3, 5, -1, -1.

flags: The following flags are available :- BM_OVERLAY, BM_SCALE,
BM_CLIP, BM_SMART and BM_STUPID. BM_OVERLAY causes the image
to be over-laid onto the control. This means that any pixels
in the image which are transparent won’t get drawn, allowing
several images to be attached to the same control and to be
transparent. BM_SCALE causes the image to be scaled to fit the
control but only works on Amigas with graphics library version
36 or above. On Amigas with graphics library version 35 or
below, BM_SCALE is ignored and BM_CLIP is used instead.
BM_CLIP is the opposite of BM_SCALE and is the default if
neither is specified. BM_CLIP causes the image to be clipped
to fit the control. BM_SMART can be used when attaching images
to controls which have the S_AUTO_SIZE flag set. It causes an
extra copy of the image to be kept so that if a window
containing the control is resized (causing the control to
resize), the image attached to the control will be re-clipped
or re-scaled (depending upon whether BM_CLIP or BM_SCALE was
specified) from the original. BM_STUPID is the opposite of
BM_SMART and is the default if neither is specified. When a
BM_STUPID control is resized, the image will still be
re-clipped or re-scaled but from the image currently shown on
the control - not from the original. The result is that if a
control containing a clipped image gets larger, no extra will
be shown or if the image is scaled, repeated re-scaling of the
image will cause quite rapid loss of definition because each
rescale will be done from the previously scaled version. If
BM_SMART is specified when attaching an image to a control
which doesn’t have the S_AUTO_SIZE flag set (and hence will
never change size) it is ignored and BM_STUPID is used instead.
The advantage of BM_SMART is obvious. The advantage of
BM_STUPID is that it requires less memory.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

LoadBitMap

ShowBitMap

HideBitMap

FreeGuiBitMap

ScaleBitMap

foxgui 26 / 203

RedrawBitMap

ScreenColoursFromILBM

1.22 ScreenColoursFromILBM function

Function prototype:

BOOL ScreenColoursFromILBM(GuiScreen *sc, char *fname);

Description:

Modifies the pallette of an open FoxGUI screen to match the pallette of
the ILBM image whose filename is specified. Useful for applications
such as slideshow viewers where it will be necessary to constantly
review the pallette to match each slide. Note that this function will
affect everything displayed on the screen and will spoil the 3D effect
of any controls on the screen unless the shine and shadow pens in the
image happen to match those used for the screen. This function attempts
to set the shine and shadow pens to sensible colours by calling

SetGuiPens
but it’s not currently very clever so you may have to call

the function again yourself afterwards. Also note that SetGuiPens
doesn’t redraw any existing controls so if you’re going to call
ScreenColoursFromILBM it’s best to do it before drawing any controls.

Parameters:

sc: A pointer to an open FoxGUI screen.
fname: The filename of an ILBM image whose pallette is to be copied.

Returns:

TRUE for success, FALSE for failure. Note that this function will fail
if the screen isn’t deep enough for the number of colours in the images
pallette.

Known bugs:

None.

See also:

LoadBitMap

1.23 FoxGUI Progress Bar functions

foxgui 27 / 203

Progress bars are indicators to display how far through a process ←↩
you are.

Usually, when an application is busy it will change the pointer for it’s
window to a stop-clock so that the user knows it’s busy. If it’s busy
doing something that will take a long time, it’s polite to show the user
how much progress is being made so that he knows the machine hasn’t crashed
and whether he’s got time to go and make a cup of tea (or even have a
nights sleep) before the application is ready for input again. This is
what progress bars are for. Typically they consist of a long, thin
rectangular frame which gradually gets filled in a different colour to show
progress. When the frame is full, the processing has finished and the user
can gain some idea of how long he has to wait by how full the progress bar
is.

The following progress bar functions are currently available :-

MakeProgressBar

SetProgress

SetProgressMax
See Also:

Destroy

Hide

Show

1.24 MakeProgressBar function

Function prototype:

ProgressBar *MakeProgressBar(void *Parent, int left, int top, int width,
int height, short fillcol, short flags, void *extension);

Description:

Make a new progress bar in the specified FoxGUI window or frame. The
progress indicator will initially be set to zero.

Parameters:

Parent: A pointer to a FoxGUI window or frame in which to make the
progress bar.

left: The offset of the left edge of the progress bar (in pixels)
from the left edge of the window/frame.

top: The offset of the top edge of the progress bar (in pixels)
from the top edge of the window/frame.

width: The width of the progress bar in pixels.
height: The height of the progress bar in pixels.

foxgui 28 / 203

fillcol: The colour in which to fill the progress bar to indicate
progress.

flags: The currently available flags are :-
PB_RAISED, PB_INSET : These specify whether the progress bar
appears rased from or inset into the screen. The default is
raised if neither is specified.
PB_CAPTION_CENTRE, PB_CAPTION_TOP_LEFT, PB_CAPTION_BOTTOM_LEFT,
PB_CAPTION_TOP_RIGHT, PB_CAPTION_BOTTOM_RIGHT : These specify
the position of the caption which can go above or below and
left or right of the progress bar or can even go right in the
middle of the bar. If you want the text in the middle, you
should make sure that tcol and fillcol are not the same colour.
If none of these is specified then the default is top right.
PB_FILL_LR, PB_FILL_BT : These specify whether the progress bar
should fill from the left towards the right or from the bottom
upwards. The default is left to right.

S_AUTO_SIZE
extension: This is for future expansion. Always set this to NULL ←↩

.

Returns:

If successful, a pointer to a new progress bar is returned. If not,
NULL is returned.

Known bugs:

None.

See also:

SetPreText

SetPostText

SetProgress

SetProgressMax

Destroy

1.25 SetProgress function

Function prototype:

void SetProgress(ProgressBar *pb, int progress);

Description:

Sets the current amount of progress for the specified progress bar.

Parameters:

foxgui 29 / 203

pb: A pointer to a progress bar to update.
progress: The amount of progress that has been made. This should be

between zero and the maximum progress amount for the progress
bar. The maximum is generally 100 so that progress is shown as
a percentage but it can be set to anything you like by calling

SetProgressMax
.

Known bugs:

None.

See also:

MakeProgressBar

SetProgressMax

1.26 SetProgressMax function

Function prototype:

void SetProgressMax(ProgressBar *pb, int progressmax);

Description:

Set the maximum for a progress bar. By default, progress bars show
progress as a percentage so you can call

SetProgress
with any number

between 0 and 100. This is not always useful, however. For example,
let’s take the case of an internet browser which downloads messages from
news groups and has to put them in your local database. It could use a
progress bar to show progress in adding them to the database. If the
progress bar went from 0 to 100, the programmer would need to work out,
after processing each message, what percentage of messages had been
processed and then set the progress bar accordingly. It would be much
easier, however, to use this function to set the maximum to the number
of messages downloaded and then just add one to the progress indicator
after processing each message.

Parameters:

pb: A pointer to the progress bar to modify.
progressmax: The maximum for the progress bar.

Known bugs:

None.

See also:

foxgui 30 / 203

MakeProgressBar

SetProgress

1.27 FoxGUI Frame functions

Frames are rather like buttons in that they look like buttons and ←↩
that if

you click on them, they perform a function which you define. Like buttons
they can also have images attached to them (drawn on them) - see

AttachBitMapToControl
and they can be hidden or shown at will. Unlike

buttons, however, frames can also respond to right mouse button clicks.

Frames are also rather like windows in that controls can be created within
them. When you create a control, one of the parameters to the function is
a pointer to a window in which to create the control. Instead of passing a
pointer to a window you can pass a pointer to a frame if you prefer.
The control will be created inside the frame, offset from the top left hand
corner by the "left" and "top" parameters you specify. The advantage of
creating controls in frames is that a group of associated controls can be
created in the same frame which gives a border around the group and shows
visually that they are associated with each other. (Of course, frames do
not have to have a border if you don’t want one). Another advantage is
that if you then want to hide a whole group of controls in the same frame,
you can just hide the frame - all of the controls within it will become
hidden too!

The following frame functions are available :-

MakeFrame

SetFrameDragPointer
See also:

Destroy

DisableControl

EnableControl

Hide

Show

SetPreText

SetPostText

foxgui 31 / 203

1.28 MakeFrame function

Function prototype:

Frame *MakeFrame(void *Parent, char *name, int left, int top, int width,
int height, struct Border *cb, int (*callfn)
(Frame*, short, short, short, void**), short flags, void *extension);

Description:

Make a new FoxGUI frame in the specified FoxGUI window or frame.

Parameters:

Parent, left, top, width, height, cb:
These parameters are identical to the similarly named parameters of

MakeButton
.

name: As with MakeButton, this should be a pointer to a NULL
terminated text string to use as a caption for the frame. If
you do not want a caption you should use "" or NULL. Unlike
buttons however, frames cannot have hot-keys and so you cannot
use the "_" character to indicate a character in the caption to
underline. You can of course use the "_" character in your
frame caption - it just won’t act the way it does for buttons.
If the caption for the frame is too long to fit in the frame it
will be truncated to fit - the caption will never extend beyond
the frame border. If the frame gets resized (due to a window
being resized) then more of the caption may become visible -
i.e. FoxGUI remembers the whole caption not just the visible
bit.

callfn: A pointer to a function to call when the user clicks on your
frame with the left or right mouse button or data is dragged
into or out of this frame (depending on which flags are
specified). The function should have the following prototype :-

int CALLBACK MyFrameFn(Frame *Fm, short Event, short x,
short y, void **DragData);

Fm will be a pointer to the frame which was clicked/dragged by
the user. Event will have one of the values FM_LBUT, FM_RBUT,
FM_DRAG or FM_DROP depending on whether the left or right mouse
button was clicked or data was dragged out of or dropped into
the frame respectively. x and y will contain the coordinates of
the exact position of the mouse event (left click, right click,
drag or drop) relative to the top, left hand corner of the
frame. DragData is NULL unless the Event is FM_DRAG or FM_DROP.
If the user is dragging this frame then you will probably want
to store a pointer to the data that’s being dragged somewhere
where it can easily be found by the control that the data is
eventually dropped in. The data can be anything you want.

foxgui 32 / 203

DragData is a pointer to a pointer that you can modify to point
to whatever piece of data it is that the user is dragging.
Let’s take a simple example - you have an application with two
frames and you want to be able to drag the name of either frame
to the other. Your event function for one of your frames might
look like this:

int FirstFrameFn(Frame *Fm, short Event, short x, short y, void ** ←↩
DragData)

{
if (Event == FM_DRAG)
{

/* The user is dragging the name of this frame to another
control (or maybe to itself!). Set DragData to point
to a constant text string containing the name of this
frame (Frame1). */

*DragData = "Frame1";
}
else if (Event == FM_DROP)
{

/* The user has dropped something in this frame. Let’s
tell the user what has been dropped and where! */

char Message[100];
sprintf(message, "%s was dropped in Frame1 at (%d, %d)", * ←↩

DragData, x, y);
GuiMessage(MyScreen, Message, "Drop!", 1, 2, 6, 5, GM_OKAY);

}
return GUI_CONTINUE;
}

As you can see from the function above, it is actually *DragData
that you set and use - DragData is a pointer to a pointer that
you can modify. See the notes in the

Drag/Drop functionality
section for more information about drag and drop event

functions.
Your function should return either

GUI_END
or
GUI_CONTINUE

.
flags: The following flags are available: FM_LBUT, FM_RBUT,

S_AUTO_SIZE
,

FM_CLEAR, FM_DRAG, FM_BORDERLESS, FM_DRAGOUTLINE and FM_DROP.
FM_LBUT causes the frame to respond to left button clicks and
FM_RBUT causes it to respond to right button clicks. FM_CLEAR
is the same as the BN_CLEAR flag for buttons (see

MakeButton
).

The FM_DRAG flag indicates that the user will be able to drag
data from this frame into other drag/drop aware controls and the
FM_DROP flag indicates that the user will be able to drag data
into this control from other drag/drop aware controls. The
FM_BORDERLESS flag causes the new frame to have no border. The
FM_DRAGOUTLINE flag will cause the outline of the frame to be
moved with the pointer when dragging the frame (this flag will

foxgui 33 / 203

be ignored if the FM_DRAG flag has not been specified).
extension: This is for future expansion. Always set this to NULL.

Returns:

If successful, a pointer to a new FoxGUI frame.

Known bugs:

None.

See also:

SetFrameDragPointer

Drag/Drop functionality

Destroy

Hide

AttachBitMapToControl

1.29 SetFrameDragPointer function

Function prototype:

void SetFrameDragPointer(Frame *Fptr, unsigned short *DragPointer, int width,
int height, int xoffset, int yoffset)

Description:

Specify a custom mouse pointer to be used when data is being dragged
from this frame.

Parameters:

Fptr: A pointer to the frame whose drag pointer is to be set.
DragPointer: A pointer to an array of numbers making up a standard

Intuition sprite data structure. This must be stored in
chip memory since it is to be used as a mouse pointer.

width: The width in pixels of the pointer provided. The maximum
width of an Amiga mouse pointer is 16 pixels.

height: The height in pixels of the pointer provided. There is no
maximum height.

xoffset:
yoffset: These two numbers specify the offset of the pointers

hot-spot from the top left corner of the sprite. They are
typically zero or negative.

Known bugs:

None.

foxgui 34 / 203

See also:

MakeFrame

1.30 FoxGUI Timer functions

Timer controls allow your program to perform tasks at regular ←↩
intervals

(every second or every minute). You do this by creating a timer using
the

MakeTimer
function which you supply with a pointer to a function

that you want to be called and a flag specifying whether you want it
called every second or every minute. The timer will not be active (and
will not call your function) until you start it with the

StartTimer
function and will not stop until you call either the
StopTimer
or

PauseTimer
function. If your timer function is to be called every

second then it’s vital to make sure that the code in your function returns
as fast as possible so as not to cause your Amiga to grind to a halt under
the strain and if your function takes over a second to run then it will not
be called again for the second that was missed during your functions
execution. If your timer is only going to trigger your function once a
minute then these issues won’t apply. Always destroy a timer (using

Destroy
) when you’ve finished with it so that it doesn’t continue

to use up valuable processing time.

The following Timer functions are currently available :-

AddTime

MakeTimer

PauseTimer

SetTime

StartTimer

StopTimer

UnpauseTimer
See also:

foxgui 35 / 203

Destroy

1.31 AddTime function

Function prototype:

void AddTime(Timer *t, long secs);

Description:

Adds a specified number of seconds to the running time of the specified
timer. For example, if timer T had been runnning for 10 seconds when
you called AddTime(T, 50) then it would now behave exactly as if it had
been running for 1 minute.

Parameters:

t: The timer whose time is to be modified.
secs: The number of seconds to add to timer t. Note that this can be a

negative number if you wish to subtract time.

Known bugs:

None.

See also:

MakeTimer

PauseTimer

SetTime

StartTimer

StopTimer

UnpauseTimer

1.32 MakeTimer function

Function prototype:

Timer *MakeTimer(short flags, int (*CallFn) (Timer *, long),
void *extension);

Description:

Create a new timer control.

foxgui 36 / 203

Parameters:

flags: Two flags are available: TM_SECOND and TM_MINUTE. Only one of
these should be specified. If you specify TM_SECOND, your timer
function will be called once a second. If you specify TM_MINUTE,
your timer function will be called once a minute.

CallFn: A pointer to a function to call once a second or once a minute
while the timer is running. At any time when the timer is
stopped or paused, the function won’t be called. The function
should have the following prototype:

int CALLBACK MyTimerFunction(Timer *WhichTimer, long
TimeInSeconds)

Your function will be passed a pointer to the timer that
triggered it (you can have more than one timer calling the same
function if you like) and the time (in seconds) since the timer
was started (excluding any time during which the timer was
paused). Your function should return either

GUI_END
or

GUI_CONTINUE
.

extension: This is reserved for future expansion and should be set to NULL.

Returns:

If successful, a pointer to the new timer control. NULL otherwise.

Known bugs:

None.

See also:

AddTime

Destroy

PauseTimer

SetTime

StartTimer

StopTimer

UnpauseTimer

1.33 PauseTimer function

foxgui 37 / 203

Function prototype:

void PauseTimer(Timer *t);

Description:

Pauses the specified timer (assuming it is currently running). When a
timer is paused, your timer function will not get called at regular
intervals as it would while the timer is running. However, unlike
stopping a timer with the

StopTimer
function, the number of seconds

that the timer has been running is retained and when the timer is
unpaused using the

UnpauseTimer
function it will continue counting

the seconds from where it left off.

Parameters:

t: A pointer to the timer to pause.

Known bugs:

None.

See also:

AddTime

SetTime

StartTimer

StopTimer

UnpauseTimer

1.34 SetTime function

Function prototype:

void SetTime(Timer *t, long secs);

Description:

This function is used to set the elapsed time (the time that a timer
has been running).

Parameters:

t: The timer control whose elapsed time you wish to set.

foxgui 38 / 203

secs: The time (in seconds) to which to set the elapsed time.

Known bugs:

Currently, this function cannot be used to set the time to 0.

See also:

AddTime

PauseTimer

SetTime

StartTimer

StopTimer

UnpauseTimer

1.35 StartTimer function

Function prototype:

void StartTimer(Timer *t);

Description:

Starts the specified timer. If the timer is paused and you want to
restart it without resetting the elapsed time to zero then use

UnpauseTimer
instead of this function. StartTimer always resets the

elapsed time to zero.

Parameters:

t: The timer to start.

Known bugs:

None.

See also:

PauseTimer

SetTime

StopTimer

UnpauseTimer

foxgui 39 / 203

1.36 StopTimer function

Function prototype:

void StopTimer(Timer *t);

Description:

Stops the specified timer (assuming that it is running). If you wish to
stop a timer and restart it later with the elapsed time preserved then
you should use

PauseTimer
instead of this function to stop the timer.

When a timer is stopped or paused, the timer function isn’t called.

Parameters:

t: The timer to stop.

Known bugs:

None.

See also:

PauseTimer

StartTimer

1.37 UnpauseTimer function

Function prototype:

void UnpauseTimer(Timer *t);

Description:

Restart a paused timer, preserving the elapsed time as it was when the
timer was paused.

Parameters:

t: The paused timer which you wish to "unpause".

Known bugs:

None.

foxgui 40 / 203

See also:

PauseTimer

StartTimer

StopTimer

1.38 FoxGUI Screen functions

All Amiga programs run on what is called a "screen". Initially a ←↩
screen

may have nothing on it other than a title bar across the top. Generally
speaking, an application will open all of it’s windows on one screen but
this is not compulsory. An application may, if appropriate, open more than
one screen or may choose not to open one at all but run on a public screen
such as the workbench screen. If you wish to have control over the
resolution of your applications display and the number of available colours
then the simplest way is to open your own screen because that is where
these attributes are defined.

FoxGUI screens are standard Intuition (Amiga) screens. This means that the
user can control FoxGUI screens in the same way as any other applications
screens. Left Amiga-m can be used to flick between screens and left
Amiga-n can be used to bring the workbench screen to the front.

The following screen functions are currently available :-

ClonePublicScreen

GetModeName

GetModeSize

GetNextAvailableDisplayMode

OpenGuiScreen

ShowDisplayList
See also:

Destroy

1.39 ClonePublicScreen function

Function prototype:

foxgui 41 / 203

GuiScreen *ClonePublicScreen(int mindepth, UBYTE *pub_screen_name, char

sScreenTitle, int (__far __stdargs LastWinFn)(GuiScreen *), int
flags, char *new_pub_name, int OverscanType, void *extension)

Description:

Open a new screen based on a public screen. Requires V36.

Parameters:

mindepth: The minimum number of planes for the screen. This
determines the number of colours that can be shown on the
screen (i.e. 1 plane gives 2 colours, 2 planes give four
colours, 3 planes give 8 colours etc). The screen being
opened will have the depth specified or the depth of the
public screen being cloned - whichever is greater.

pub_screen_name: The name of the public screen to clone. e.g. "Workbench".
sScreenTitle: A pointer to a null terminated character string to

appear in the screens title bar. The Gui doesn’t make a
copy of this string, it uses the pointer supplied so you
should make sure that this pointer remains valid while
the screen is open.

LastWinFn: See
OpenGuiScreen
for details.

flags: The GS_CLONEFONT flag causes the public screens font to be
used for your new screen. The GS_CLONEPENS flag causes
the public screens pens to be used for the new screen.

new_pub_name: A pointer to a NULL terminated character string to use
as the screen’s public name. If PubName is NULL or "" or
the application is running under an OS version prior to
V36 then the screen will be private (Public screens
weren’t available before V36), otherwise an attempt will
be made to make the new screen public with the specified
name. Specifying a PubName on an OS version prior to V36
will not cause the function to fail, the PubName will
simply be ignored.

OverScanType: See
OpenGuiScreen
for details.

extension: This is for future expansion. Always set this to NULL.

Returns:

If successful, a pointer to a valid GuiScreen structure is returned. If
not then NULL is returned.

Known bugs:

None.

See also:

Destroy

GetNextAvailableDisplayMode

foxgui 42 / 203

OpenGuiScreen

ScreenColoursFromILBM

ShowDisplayList

1.40 GetScreenDetails function

Function prototype:

struct Screen *GetScreenDetails(void *scr, unsigned long *mode, int *depth, ←↩
char *fontname, int bufsize,
int *reqbufsize, int *fontheight, int *fontstyle, UWORD *pens, int ←↩

pensarraysize)

Description:

Get the details of a currently open public or FoxGUI screen. Requires
V36.

Parameters:

scr: Pointer to the FoxGUI screen or name of public screen.
mode: Returns the screen mode of the specified screen. Set to

NULL if you don’t need to know the display mode.
depth: Returns the depth of the specified screen. Set to NULL

if you don’t need to know the screen depth.
fontname: Pointer to a character array to hold the returned name of

the screens font. Set this to NULL if you don’t need to
known the font name.

bufsize: The size of the fontname string.
reqbufsize: Returns the required size for the fontname string. If

after calling GetScreenDetails, the reqbufsize returned
is larger than the size of the fontname string then the
font name will be incomplete and you should allocate a
larger string and call this function again to get the
full font name.

fontheight: If this is not NULL then the size of the font for the
specified screen is returned here.

fontstyle: If this is not NULL then the style of the font for the
specified screen is returned here.

pens: An array to contain the pens array for the specified
screen. Unless you know the number of pens used by the
screen then it is safest to make sure that this size of
this array is NUMDRIPENS. Pass NULL if you don’t need to
know the screen pens.

intpenarraysize: The size of your pens array.

Returns:

A pointer to the intuition screen struvture for the specified screen.
Note that if the specified screen was a public non-FoxGUI screen then
the screen will not be locked at this point so the screen could close at

foxgui 43 / 203

any time and this pointer could become invalid.

Known bugs:

None.

See also:

Destroy

GetNextAvailableDisplayMode

OpenGuiScreen

ScreenColoursFromILBM

ShowDisplayList

1.41 OpenGuiScreen function

Function prototype:

GuiScreen *OpenGuiScreen(int Depth, int DPen, int BPen, char *Title, int
(*LastWinFn)(GuiScreen *), int flags, char *PubName,
unsigned long DisplayID, int OverscanType, UWORD *pens, void *extension)

Description:

Open a new screen with the attributes specified.

Parameters:

Depth: The number of planes for the screen. This determines the number
of colours that can be shown on the screen (i.e. 1 plane gives 2
colours, 2 planes give four colours, 3 planes give 8 colours
etc).

DPen: The detail pen colour for the screen.
BPen: The block pen colour for the screen.

Title: A pointer to a null terminated character string to appear in the
screens title bar. The Gui doesn’t make a copy of this string,
it uses the pointer supplied so you should make sure that this
pointer remains valid while the screen is open.

LastWinFn: For public screens, this can point to a function which you
want to be triggered when the last visiting window (i.e.
window opened by an application other than the current one) on
your public screen is closed. If you wish, you can use the
same function for more than one screen if your application has
more than one. You can differentiate between the screens by
using the GuiScreen pointer which is automatically passed to
the function. The function should return either

GUI_END
or

foxgui 44 / 203

GUI_CONTINUE
. If for example you wanted your application to

finish as soon as the user closed the last window on the
screen, you could do something like this:

int CALLBACK MyLastWinFunction(GuiScreen *scr)
{

/* All visiting windows are now closed. Check to see
whether any of my own windows are open. */

BOOL AllMyWindowsAreClosed = AllClosed();

if (AllMyWindowsAreClosed)
return GUI_END;

else
return GUI_CONTINUE;

}

If you do not want a function triggered then pass NULL for
LastWinFn. If PubName is NULL or "" or if the application is
running on an OS version prior to V36 then LastWinFn is
ignored.

flags: The following flags are available for screens: GS_AUTOSCROLL,
GS_INTERLACE, GS_DISPLAY_ID, GS_OVERSCAN and GS_PENS.
GS_AUTOSCROLL specifies that if the screen width and height are
greater than the display width and height then the screen will
automatically scroll to reveal the rest of the screen whenever
the mousepointer is brought close to the edge of the display.
At the moment, OpenGuiScreen always opens the screen so that it
fits the display so this flag is not very useful at the moment.
The GS_INTERLACE flag specifies that the screen should be
interlaced - this gives the screen twice as many rows (i.e.
doubles the screen’s vertical resolution) but can cause the
display to be very flickery - especially on a TV screen.
GS_INTERLACE will be ignored if the GS_DISPLAY_ID flag is used
to describe the screenmode.

PubName: A pointer to a NULL terminated character string to use as
the screen’s public name. If PubName is NULL or "" or the
application is running under an OS version prior to V36 then
the screen will be private (Public screens weren’t available
before V36), otherwise an attempt will be made to make the new
screen public with the specified name. Specifying a PubName on
an OS version prior to V36 will not cause the function to fail,
the PubName will simply be ignored.

DisplayID: An Intuition Display ID describing the screen mode for the
new screen. This parameter is ignored unless the
GS_DISPLAY_ID flag was specified. You should make sure that
the DisplayID is valid by looking it up in the display database
first. This can be done using standard Intuition functions or
by calling the FoxGUI functions

GetNextAvailableDisplayMode
or

ShowDisplayList
OverScanType: The overscan style to use for the new screen. This ←↩

should
have one of the values OSCAN_TEXT, OSCAN_STANDARD, OSCAN_MAX or
OSCAN_VIDEO but will be ignored unless the GS_OVERSCAN flag was
specified. These values are defined by Intuition and you

foxgui 45 / 203

should see the Rom Kernel Reference Manuals for more
information.

Pens: A pointer to a Pen array for the new screen. This is an
array of pen colours terminated by the value ~0. This
parameter will be ignored unless the GS_PENS flag was
specified. If the GS_PENS flag is not specified then, if the
application is used on an Amiga that does not support the
three-d look, the Detail pen and Block pen specified in the
DPen and BPen parameters will be used or, if the application is
run on an Amiga which does support the three-d look then an
attempt will be made to use a copy of the Workbench pens. If
that attempt fails, then the default pen set will be used.

extension: This is for future expansion. Always set this to NULL.

Returns:

If successful, a pointer to a valid GuiScreen structure is returned. If
not then NULL is returned.

Known bugs:

None.

See also:

ClonePublicScreen

Destroy

GetNextAvailableDisplayMode

ScreenColoursFromILBM

ShowDisplayList

1.42 GetModeName function

Function prototype:

int GetModeName(unsigned long displaymode, char *buffer, int buflen);

Description:

Looks up the name of the specified display mode ID in the display
database and copies the name into the buffer supplied. If the buffer is
not long enough to store the whole mode name, as much as possible is
copied into the buffer.

Parameters:

displaymode: The displaymode whose name you want to find.
buffer: A pointer to a buffer to store the name.
buflen: The length of the buffer.

foxgui 46 / 203

Returns:

The buffer length required to store the name of the specified mode.

Known bugs:

None.

See also:

GetModeSize

GetNextAvailableDisplayMode

ShowDisplayList

1.43 GetModeSize function

Function prototype:

BOOL GetModeSize(unsigned long displaymode, long *width, long *height);

Description:

Returns the width and height of a display mode. Works for most modes
present on earlier Amigas and all modes on Amigas which support the
display database.

Parameters:

displaymode: The mode id of the mode whose size you want to know.
width: Returns the width of the requested mode.

height: Returns the height of the requested mode.

Returns:

TRUE for success, FALSE otherwise.

Known bugs:

None.

See also:

GetModeName

GetNextAvailableDisplayMode

OpenGuiScreen

ShowDisplayList

foxgui 47 / 203

1.44 GetNextAvailableDisplayMode function

Function prototype:

unsigned long GetNextAvailableDisplayMode(unsigned long previous);

Description:

Gets the next available display mode supported by the Amiga running the
software (the modes available will depend upon the version of the custom
chips in the Amiga, the monitors installed and whether or not the Amiga
has a graphics card). The value returned from a call to this function
can be passed to the

OpenGuiScreen
function to determine the display

mode used by the new screen.

Parameters:

previous: The value returned by the previous call to this function or
INVALID_ID if this is the first call to this function. A list
of available mode ID’s can be generated by calling the
function passing INVALID_ID to get the first available mode
then calling the function again passing the value returned the
previous time to get the next one and so on. When there are
no more valid display mode ID’s to return, the function will
return INVALID_ID. INVALID_ID is defined in graphics/modeid.h

Returns:

The ID of the next available display mode.

Notes:

Unlike the intuition functions for handling mode ID’s the FoxGUI
functions work on all Amigas. On a basic Amiga 500 this function will
return 4 valid mode ID’s before returning INVALID_ID. The ID’s will be
for the modes LORES, HIRES, LORES Laced and HIRES Laced.

See also:

OpenGuiScreen

ShowDisplayList

1.45 ShowDisplayList function

foxgui 48 / 203

Function prototype:

BOOL ShowDisplayList(void *Scr, char *title, int DPen, int BPen,
unsigned long *displayModeID);

Description:

Opens a window which contains a list box showing the names of all of the
display modes available on the Amiga on which the program is run. The
window also has Okay and Cancel buttons. The Okay button is not enabled
until the user selects a mode from the list. The idea is that if you
want the user of your program to be able to select the screen mode in
which to open a screen you can call this function. The mode ID returned
from a call to this function can be passed to the

OpenGuiScreen
function to determine the display mode used by the new screen.

Parameters:

Scr: A pointer to the screen on which to open the window.
title: A text string to be shown as the window title.
DPen: The detail pen of the window (see

OpenGuiWindow
).

BPen: The block pen of the window (see
OpenGuiWindow

).
displayModeID: A pointer to a variable to receive the selected display

mode ID.

Returns:

TRUE if the user selected a mode and then pressed the Okay button, FALSE
if the user pressed Cancel. If the user pressed Okay, the mode ID of
the selected mode is returned in the displayModeID parameter.

Notes:

Unlike the intuition functions for handling mode ID’s the FoxGUI
functions work on all Amigas. On a basic Amiga 500 this function will
show 4 valid mode ID’s - LORES, HIRES, LORES Laced and HIRES Laced.

See also:

GetNextAvailableDisplayMode

OpenGuiScreen

1.46 FoxGUI Window functions

FoxGUI windows are standard Intuition windows made easy. I’m not ←↩
going to

foxgui 49 / 203

launch into a conceptual overview of what windows are and what you can do
with them because if you’re about to write an Amiga application then you’re
bound to know already and if you don’t then you should probably read
something else first. You can open one with a simple call to

OpenGuiWindow
and there are plenty of other windows functions below to make your

programming life very simple.

The following window functions are currently available :-

OpenGuiWindow

SetFName

SetPath

SetWindowLimits

ShowFileRequester

SleepPointer

UpdateFList

WakePointer

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

WinWrapOn
See also:

Destroy

foxgui 50 / 203

1.47 OpenGuiWindow function

Function prototype:

GuiWindow *OpenGuiWindow(void *Scr, int Left, int Top, int Width, int Height,
int Dpen, int Bpen, char *Title, int flags,
int (*eventfn)(GuiWindow*, int, int, int, void*), void *extension)

Description:

Open a new FoxGUI window on the specified screen.

Parameters:

Scr: A pointer to an open FoxGUI screen in which the window is to
be opened or a text string containing the name of a public
screen on which to open the window. If Scr is the name of a
public screen and the application is run on an Amiga which
does not support public screens or if the public screen does
not exist the function will return NULL.

Left: The coordinate of the left edge of the window relative to
the left edge of the screen.

Top: The coordinate of the top edge of the window relative to the
top edge of the screen. Note that this is from the very top
of the screen so a y coordinate of 0 will cause the window to
at least partly obscure the screens title bar if it has one.

Width: The width of the window in pixels.
Height: The height of the window in pixels.

Dpen: The detail pen colour for the window.
Bpen: The block pen for the window.

The detail and block pen colours are passed directly to the
intuition OpenWindow() function. When your application is
run on OS2.0 or higher these parameters are largely ignored
because intuition uses the screen’s pen colours to create the
3D look for the window border. On earlier OS releases, these
two parameters are used to determine the window colours.

Title: A pointer to a NULL terminated text string to appear in the
window’s title bar. If you set this to NULL or "" then the
window will have no title. Setting this to "" will force the
window to have a title bar whereas NULL will allow the window
to have no title bar at all (specifying some of the gadget
flags such as GW_DRAG and GW_CLOSE will also force the window
to have a title bar). If the Title is non-NULL then it is
your responsibility to ensure that the text string remains
valid - OpenGuiWindow does not make it’s own copy of the
string.

flags: The following flags are currently available for Gui windows :-
GW_CONSOLE, GW_DRAG, GW_BORDERLESS, GW_DEPTH, GW_CLOSE,
GW_SIZE, GW_BACKDROP, GW_ACTIVE, GW_DROP, GW_DISKIN and
GW_DISKOUT. You can select more than one of these by ORing
them together e.g. GW_DRAG | GW_DEPTH.

GW_CONSOLE causes a console to be opened in the window. This
allows you to easily write text into the window using the
following console functions :-

foxgui 51 / 203

WinBlankToEOL

WinPrint

WinShowCursor

WinClear

WinPrintCol

WinTab

WinHideCursor

WinWrapOff

WinHome

WinPrintTab

WinWrapOn
Note that Intuition places a limit on the number of ←↩

consoles
that can be open at a time which is currently 4. If you
specify the GW_CONSOLE flag and the application can’t open
another console then OpenGuiWindow will fail and return NULL.

GW_BACKDROP causes the window to be a backdrop window.
Backdrop windows have no imagery and always appear behind all
non-backdrop windows on the screen. Backdrop windows cannot
have close, size or depth gadgets and are never draggable so
if GW_BACKDROP is specified, the GW_CLOSE, GW_SIZE, GW_DEPTH
and GW_DRAG flags, if specified will be ignored.

GW_DRAG causes the window to be dragable (i.e. you can drag
the window around the screen by pressing the left mouse
button when the pointer is over the window’s title bar and
then keeping the button pressed down while you drag the mouse
around the screen). If you specify this flag, your
event function (if you specify one - see eventfn below)
will be called whenever the user drags the window.

GW_BORDERLESS causes the window to have no border. If any of
the gadget flags are specified (such as GW_CLOSE) or the
window has a title then the title bar will still be drawn but
the border around it and around the other edges of the window
will not be shown.

GW_DEPTH will create a depth-gadget at the right hand end of
the window’s title bar. Clicking this when the window is
partly obscured by other windows will bring the window to the
front. If the window is already at the front then clicking
the depth gadget will send the window to the back. On older
versions of the Amiga OS, two gadgets are created - one for
each of these functions.

GW_SIZE causes the window to have a size gadget at the bottom

foxgui 52 / 203

of the right hand border. This allows the user to size the
window. The minimum and maximum sizes of the window can be
specified by calling the function

SetWindowLimits
. If

controls within the window are created with the
S_AUTO_SIZE

flag set then they will automatically get moved and ←↩
resized

when the window is resized. For best results, open your
window as small as possible so that the controls all fit in
and are nicely spaced and set minwidth and minheight equal to
the width and height parameters respectively. Making the
window bigger will make the controls proportionately bigger
too. If you specify this flag, your event function (if you
specify one - see eventfn below) will be called whenever the
user drags the window.

GW_CLOSE will create a close gadget in the left hand end of
the window’s title bar. You can control the operation of the
close gadget by supplying your own event function (see the
eventfn parameter) or, if you don’t supply an event
function, FoxGUI will just close the window for you when the
close gadget is clicked.

GW_ACTIVE specifes that you want your application to know
whenever the window becomes activated (i.e. when the user
clicks in the window when another window has been active).
Note that this event will usually occur when you first create
a window. If you specify this flag, you will need to specify
a function to call when the window becomes active. See the
eventfn parameter below.

GW_DROP specifies that the window is allowed to have items
"dropped" into it when writing an application which has Drag
and Drop functionality. If the GW_DROP flag is specified
then your event function will be called whenever something is
dropped in your window (see the eventfn parameter below).

GW_DISKIN causes your window to be notified whenever a disk
is inserted. If you specify this flag, you will need to specify
a function to call when a disk is inserted (see the eventfn
parameter below).

GW_DISKOUT causes your window to be notified whenever a disk
is removed. If you specify this flag, you will need to
specify a function to call when a disk is removed (see the
eventfn parameter below).

eventfn: This is a pointer to a function to be called whenever events
occur in your window. The event that occurred will be passed
as a parameter to the function along with other details such
as the x and y coordinates of the event if applicable. The
event function will only be called for events which you have
specified in the flags parameter. If you have not specified
any events in the flags parameter (or if you do not wish to
do any processing on those events) then this parameter can be

foxgui 53 / 203

NULL. If you have specified the flag GW_CLOSE and this
parameter is NULL then FoxGUI will simply close your window
if the close button is clicked. Your event function should
have the following prototype:

int CALLBACK Eventfn(GuiWindow *WhichWindow, int
Event, int x, int y, void *DropData);

As you can see, the function will be passed a pointer to the
window in which the event occurred, thus allowing you to use
one function to handle events for more than one window. Your
function should return either

GUI_CONTINUE
or
GUI_END

.
If the event is GW_CLOSE you can also optionally return
GUI_CANCEL ORed with either GUI_CONTINUE or GUI_END. If you
return GUI_CANCEL then FoxGUI will not close the window for
you, otherwise it will. If your event function for the
GW_CLOSE event closes the window itself then you must return
GUI_CANCEL otherwise FoxGUI will attempt to close the already
closed window and a crash is likely.

Depending on the flags you have specified, your event
function may also be called whenever an object is dropped in
the window (in which case the event will be GW_DROP) or the
window is sized (GW_SIZE), dragged (GW_DRAG) or activated
(GW_ACTIVE) or whenever a disk is inserted (GW_DISKIN) or
removed (GW_DISKOUT).

The parameters to your event function are described below.

WhichWindow is a pointer to the GuiWindow affected. This
allows you to use the same event function for more than one
GuiWindow if you wish.

Event will be either GW_CLOSE, GW_DROP, GW_SIZE, GW_DRAG,
GW_ACTIVE, GW_DISKIN or GW_DISKOUT depending on what just
happened to your window.

If the event is GW_DROP then x and y will contain the
coordinates of the point in the window that the object was
dropped. If the event is GW_DRAG then x and y will contain
the new coordinates of the top left corner of the window
relative to the screen. If the event is GW_SIZE then x and y
will contain the new width and height of the window. If the
event is GW_ACTIVE then x and y will be zero. The values of
x and y are unspecified if the event is GW_DISKIN, GW_DISKOUT
or GW_CLOSE.

If the event is GW_DROP then DropData will be a pointer to the
data which was initialised in the drag event. Otherwise
DropData will be NULL. Unlike the event function for a Frame,
the event function for a window receives a pointer to the
dragged data (rather than a pointer to a pointer to the
dragged data). This is because you cannot drag data out of a

foxgui 54 / 203

window - only into it and so you will never need to modify the
data pointer from within a window’s drop function. For
further information on drag and drop see the

MakeFrame
function.

extension: This parameter is for future extension and should be NULL.

Returns:

If successful, a pointer to the new FoxGUI window is returned.
Otherwise NULL is returned.

Known bugs:

When the GW_CONSOLE flag is specified, no console is currently created.
I hope to have this fixed in the next release. In the meantime, do not
use any of the console functions.

See also:

SetWindowLimits

Drag/Drop functionality

Destroy

ShowFileRequester

SleepPointer

WakePointer

1.48 SetFName function

Function prototype:

void SetFName(char *fname);

Description:

Set the file name in an open, non ASL file requester created by calling
the function

ShowFileRequester
. You would typically use this to reset

the file name if the user had attempted to open a file that didn’t
exist. Note that if your application is running on an Amiga with ASL
library version 37 or greater then ShowFileRequester will open an ASL
file requester (the standard Amiga file requester). In this case, this
function will do nothing.

Parameters:

foxgui 55 / 203

fname: A pointer to a NULL terminated text string containing the file
name to put in the file requester. It is not necessary to
maintain the string after calling the function because FoxGUI
will make it’s own copy of the string.

Known bugs:

None.

See also:

SetPath

ShowFileRequester

UpdateFList

1.49 SetPath function

Function prototype:

void SetPath(char *path);

Description:

Set the file path in an open, non ASL file requester created by calling
the function

ShowFileRequester
. You would typically use this to reset

the file path if the user had attempted to open a file that didn’t
exist. Note that if your application is running on an Amiga with ASL
library version 37 or greater then ShowFileRequester will open an ASL
file requester (the standard Amiga file requester). In this case, this
function will do nothing.

Parameters:

path: A pointer to a NULL terminated text string containing the file
path to put in the file requester. It is not necessary to
maintain the string after calling the function because FoxGUI
will make it’s own copy of the string.

Known bugs:

None.

See also:

SetFName

ShowFileRequester

foxgui 56 / 203

UpdateFList

1.50 ShowFileRequester function

Function prototype:

BOOL ShowFileRequester(GuiWindow *Wnd, char *path, char *fname, char *pattern, ←↩
char

*title, BOOL Save, int (*callfn) (char*, char*))

Description:

Show a file requester. On Amigas with ASL library version 37 or above,
this will open a standard ASL file requester, allowing the user to
select the filename and path of a file to perform some specific action
on (usually loading or saving the file). On Amigas without the ASL
library a functionally equivalent file requester is opened which allows
a file name and path to be selected in exactly the same way.

Parameters:

Wnd: A file requester must be "attached" to a window. Wnd should be
a pointer to an open FoxGUI window to which the file requester
will be attached. Any open FoxGUI window will do - the window
will not be changed in any way. The only criterion to use when
deciding which window to pass is which screen you want the file
requester to appear in. The file requester will always appear
on the same screen as the window that you attach it to.

path: The initial file path for the file requester.
fname: The default filename to show in the requester.

pattern: This allows you to filter the files that appear in the file
list. Directories will always be shown. If you want all files
to be shown then set the pattern to "" (never set this to
NULL). If the pattern is not blank then the last characters of
the filename must match the pattern e.g. if the pattern is set
to "fox" then only file names ending "fox" will be shown. You
would usually use this to show files of a certain type, e.g. to
only show AmigaGuide files you might set this to ".guide".
Note that the pattern is not case sensitive so ".guide" would
also match ".GUIDE" or ".Guide" etc.

title: The title to appear in the top border of the file requester.
Save: If TRUE then the left-most button on the file requester will

have the caption "Save" otherwise it will have the caption
"Load". The colours of the file list are also inverted for
Save file requesters.

callfn: A pointer to a user-defined function to call when the Save or
Load button is pressed. Your function should have the
following prototype:-

int MyFileFn(char *FName, char *FPath);

Your function will be passed the filename and file path of the
file selected by the user in the parameters FName and FPath
respectively. Note that there is no guarantee that the path

foxgui 57 / 203

or the file exists because the user can type directly into the
filename and path edit boxes in the file requester as well as
select files from the file list. You should not modify the
strings passed to this function as they are required by FoxGUI
- make your own copy and modify that if necessary.

Your function should return either GUI_MODAL_END or
GUI_CONTINUE

.
If GUI_MODAL_END is returned, the file requester will go away
immediately. If GUI_CONTINUE is returned, the file requester
will remain present. You would typically return GUI_CONTINUE
if your function failed for some reason and GUI_MODAL_END
otherwise.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

Other notes:

Prior to release 5.0, this function took many extra parameters - the
colours for the file requester window. These parameters should be
ommitted from 4.3 onwards where the window colours are based on the
colours of the GuiWindow passed as the first parameter.

I originally implemented this file requester without the ASL library.
It was designed to remain shown until you press the "Done" button. The
idea was that you selected a file to load (or save), pressed the "Load"
(or "Save") button and while your user-defined function did the
necessary loading or saving, the file requester would remain shown but
temporarily disabled. The ASL file requester behaves slightly
differently - it goes away as soon as the Load or Save button is
pressed. I didn’t want this to happen because occasionally, when
loading, the user may mistype a file name or saving may fail due to a
floppy being write protected or the disk being full and I thought the
file requester should still be there so that they could try again and
should only disappear when the user clicked on the Done button. For
this reason, I have implemented this in such a way that if the ASL file
requester is used, it disappears during loading or saving (I have no
control over that) but it reappears once loading/saving is complete if
(and only if) your load/save function returns GUI_CONTINUE. If your
load/save function returns GUI_MODAL_END then the file requester will go
away.

See also:

SetFName

SetPath

UpdateFList

foxgui 58 / 203

1.51 SleepPointer function

Function prototype:

BOOL SleepPointer(GuiWindow *win);

Description:

Puts the specified window to sleep (the mouse pointer becomes the
stop-clock whenever the specified window is active. All controls in the
window become inactive). The window can be woken again with the
function

WakePointer
.

Parameters:

win: A pointer to an open FoxGUI window.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

Due to a bug in earlier versions of the Amiga OS, it is impossible to
detect (on early Amigas) whether the method that this function uses to
disable the window has actually succeeded so on earlier Amigas this
function always returns TRUE. On later Amigas the return value is
completely reliable. In practice I have never known the window
disabling to fail so this is unlikely to cause problems.

See also:

WakePointer

1.52 UpdateFList function

Function prototype:

void UpdateFList(void);

Description:

Forces an open file requester to update it’s file list. This function
does nothing on Amigas which use the ASL file requester (see the

ShowFileRequester

foxgui 59 / 203

function). If no file requester is open, this
function does nothing.

Known bugs:

None.

See also:

SetFName

SetPath

ShowFileRequester

1.53 WakePointer function

Function prototype:

void WakePointer(GuiWindow *win);

Description:

Wake up a window previously put to sleep by the
SleepPointer

function. If the window is not asleep then this function does ←↩
nothing.

Parameters:

win: A pointer to the FoxGUI window to wake up.

Known bugs:

None.

See also:

SleepPointer

1.54 SetWindowLimits function

Function prototype:

BOOL SetWindowLimits(GuiWindow *gw, long minwidth, long minheight, unsigned ←↩
long maxwidth,
unsigned long maxheight);

foxgui 60 / 203

Description:

Set the minimum and maximum width and height of a resizeable window. If
the window is not resizeable (i.e. wasn’t created with the GW_SIZE flag)
then this function will do nothing.

Parameters:

gw: A pointer to the FoxGUI window.
minwidth: The new minimum width of the window. If the window is

currently not as wide as this value then it will be ignored.
If this value is zero then the minimum width will remain
unchanged.

minheight: The new minimum height of the window. If the window is
currently not as high as this value then it will be ignored.
If this value is zero then the minimum height will remain
unchanged.

maxwidth: The new maximum width of the window. If the window is
currently wider than this value then it will be ignored.
If this value is zero then the maximum width will remain
unchanged.

maxheight: The new maximum height of the window. If the window is
currently higher than this value then it will be ignored.
If this value is zero then the maximum height will remain
unchanged.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

OpenGuiWindow

1.55 WinBlankToEOL function

Function prototype:

void WinBlankToEOL(GuiWindow *w)

Description:

Blank from the current cursor position to the end of the current line in
the console attached to the specified window. The cursor can be moved
with the

WinTab
function.

Parameters:

foxgui 61 / 203

w: A pointer to an open FoxGUI window which has a console attached.

See also:

OpenGuiWindow

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

1.56 WinClear function

Function prototype:

void WinClear(GuiWindow *w)

Description:

Clear the console in the specified FoxGUI window.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.

See also:

OpenGuiWindow

WinBlankToEOL

WinHideCursor

WinHome

WinPrint

foxgui 62 / 203

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

1.57 WinHideCursor function

Function prototype:

void WinHideCursor(GuiWindow *w)

Description:

Hides the cursor in a FoxGUI window which has a console attached. By
default the cursor is visible and at the top left corner of the window.
The cursor can be moved by the

WinTab
function and by functions which print

text in the console such as
WinPrint

. After being hidden, the cursor
can be shown again with the function

WinShowCursor
.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHome

WinPrint

WinPrintCol

WinPrintTab

foxgui 63 / 203

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

1.58 WinHome function

Function prototype:

void WinHome(GuiWindow *w)

Description:

Moves the cursor to the top left of the specified FoxGUI window which
has a cursor attached. Calling WinHome(MyWindow) is entirely equivalent
to calling WinTab(MyWindow, 1, 1).

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinPrint

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

1.59 WinPrint function

foxgui 64 / 203

Function prototype:

void WinPrint(GuiWindow *w, char *str)

Description:

Prints the specified text string at the current cursor position in the
console attached to the specified open FoxGUI window. If the text is
too long to fit between the current cursor position and the end of the
current line in the console then the text will either be truncated or
the text will continue at the beginning of the next line of the console.
Whether or not the text is truncated depends on whether text wrapping is
turned on in the console. Text wrapping can be turned on and off with
the functions

WinWrapOn
and
WinWrapOff
respectively. If the text

reaches the bottom right hand corner of the window and text wrapping is
turned on then the console will scroll up a line to allow room for the
next line of text. This will remove the top line of text from the
window. After printing the text, the cursor will be positioned
immediately after the last character that was printed unless the right
hand edge of the console has been reached with text wrapping turned off
in which case the cursor will be on the last character printed.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.
str: The text that you want to be printed at the current cursor position

in the specified windows console.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

foxgui 65 / 203

1.60 WinPrintCol function

Function prototype:

void WinPrintCol(GuiWindow *w, char *str, int col)

Description:

This function prints the text string specified into the console of the
specified open FoxGUI window (the window must have a console attached at
the time it is opened) in the specified colour. The way the text is
printed will depend on whether text wrapping is currently turned on or
off in the console. See

WinPrint
for a full explanation.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.
str: The text that you want to be printed at the current cursor position

in the specified windows console.
col: The colour in which the text should be printed. This should be an

integer whose maximum value will be dependant on the number of
bitplanes used by the screen. For example, if the screen is opened
with one bitplane then col should be between 0 and 1. If the
screen has two bitplanes then col should be between 0 and 3. In
general, col should be between 0 and 2^n - 1 where n is the number
of bitplanes.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

foxgui 66 / 203

1.61 WinPrintTab function

Function prototype:

void WinPrintTab(GuiWindow *w, int x, int y, char *str)

Description:

This function first moves the console cursor of the specified open
FoxGUI window to the coordinates given in x and y and then prints the
specified text string at that position. Calling this function is
equivalent to calling the

WinTab
function followed by the
WinPrint

function and you should read the sections on those two ←↩
functions for further

details.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.
x: The x coordinate to move the cursor to before printing the text.
y: The y coordinate to move the cursor to before printing the text.

str: The text that you want to be printed.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintCol

WinShowCursor

WinTab

WinWrapOff

WinWrapOn

foxgui 67 / 203

1.62 WinShowCursor function

Function prototype:

void WinShowCursor(GuiWindow *w)

Description:

Shows the cursor in the specified window. The window must have a
console attached. The cursor is shown by default so it is only
necessary to call this function if you have previously hidden the cursor
with the

WinHideCursor
function and you now want to make it visible

again.

Parameters:

w: A pointer to the open FoxGUI window whose console cursor you wish to
show.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintCol

WinPrintTab

WinTab

WinWrapOff

WinWrapOn

1.63 WinTab function

Function prototype:

void WinTab(GuiWindow *w, int x, int y)

Description:

foxgui 68 / 203

Move the specified windows console cursor to the coordinates specified.
Console coordinates have the origin at (1,1). i.e. the top left of the
console is at x=1, y=1. Specifying 0 for either coordinate will just
set that coordinate to 1.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.
x: The x coordinate to move the cursor to.
y: The y coordinate to move the cursor to.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintCol

WinPrintTab

WinShowCursor

WinWrapOff

WinWrapOn

1.64 WinWrapOff function

Function prototype:

void WinWrapOff(GuiWindow *w)

Description:

Turn off text wrapping for the console in the specified FoxGUI window.
For a description of how text wrapping affects the way text is printed
in a console, see the

WinPrint
function.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.

foxgui 69 / 203

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

WinHome

WinPrint

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOn

1.65 WinWrapOn function

Function prototype:

void WinWrapOn(GuiWindow *w)

Description:

Turn on text wrapping for the console in the specified FoxGUI window.
For a description of how text wrapping affects the way text is printed
in a console, see the

WinPrint
function.

Parameters:

w: A pointer to an open FoxGUI window which has a console attached.

See also:

OpenGuiWindow

WinBlankToEOL

WinClear

WinHideCursor

foxgui 70 / 203

WinHome

WinPrint

WinPrintCol

WinPrintTab

WinShowCursor

WinTab

WinWrapOff

1.66 FoxGUI Menu functions

Menus are attached to FoxGUI windows and appear in the title bar ←↩
of the

screen containing the window when the right mouse button is pressed down
(but then, being an Amiga user you already knew that). FoxGUI allows a set
of menus to be shared between multiple windows without having to create an
identical set for each window (see

ShareMenus
below). The functions

below should be obvious by their names.

The following menu functions are currently available :-

AddMenu

AddMenuItem

AddSubMenuItem

ClearMenus

DisableMenu

DisableMenuItem

DisableWinMenus

EnableMenu

EnableMenuItem

EnableWinMenus

IsMenuChecked

RemoveMenuItem

foxgui 71 / 203

SetMenuChecked

SetWinMenuFn

ShareMenus

1.67 AddMenu function

Function prototype:

struct Menu *AddMenu(GuiWindow *win, char *name, int leftedge, int enabled);

Description:

Add a new top-level menu to the specified Gui window. Note that
each gui window can have no more than 31 top-level menus. More than
one Gui window can share the same set of menus - see ShareMenus
Link ShareMenus}

Parameters:

win: A pointer to an open Gui window to which a new top-line menu
will be added.

name: A pointer to a NULL-terminated text string which will appear
in the gui window’s menu bar.

leftedge: The offset of the new menu from the left hand edge of the
screen in pixels.

enabled: If FALSE, the menu will initially be disabled. Otherwise
enabled.

Returns:

If successful, a pointer to the new menu structure is returned. You
will need to pass this to the function AddMenuItem when adding items to
this top-line menu. If AddMenu fails, NULL is returned.

Known bugs:

None.

See also:

AddMenuItem

ClearMenus

DisableMenu

DisableWinMenus

EnableMenu

EnableWinMenus

foxgui 72 / 203

SetWinMenuFn

ShareMenus

1.68 AddMenuItem function

Function prototype:

struct MenuItem *AddMenuItem(GuiWindow *win, struct Menu *menu,
char *name, char *selname, unsigned short flags, int key, int enabled,
int checkit, int checked, int menutoggle);

Description:

Adds a new menu item to the specified top-level menu in the specified
window. There are three types of menu items - those that perform some
user-defined action (these are known as Action items and have no special
imagery), those that toggle between two states (these are known as
Checkmark items and have a tick to the left of the item text which is
either shown or hidden depending on their state) and those which contain
sub-menus (these have the » symbol to the right of the text to indicate
that a submenu is present). Shortcut keys can be applied to the first
two types of menu. Menus containing sub-menus are made in exactly the
same way as action menus. The sub-menu is then added using calls to the
function

AddSubMenuItem
. Note that each top-level menu can contain no

more than 63 menu items

Parameters:

win: A pointer to the open Gui window that the menu item is to be
added to.

menu: A pointer to the top-level menu which this item is to appear
in.

name: A pointer to a NULL-terminated text string to appear in the
drop down menu.

selname: A pointer to an optional NULL-terminated text string to be
displayed when the menu option is hilighted instead of the
more usual hilighting method of inverting the pixels. Use
NULL for normal hilighting.

flags: Currently unused but reserved for future enhancements. To
ensure compatibility with later versions, set this to zero.

key: The shortcut key for the menu. For example, passing ’Q’
would make right Amiga-Q the hotkey for the menu. Pressing
right Amiga-Q would then have the same effect as selecting
the menu. Pass 0 if no shortcut key is required.

enabled: If FALSE, the menu item will initially be disabled.
Otherwise enabled.

checkit: If TRUE then this will be a Checkmark item.
checked: Set this to TRUE if the item is a Checkmark item and you

want it to be initially checked (i.e. you want the tick to
appear). If this is an action item or if it is a checkmark
item which you want to be initially unchecked then set this

foxgui 73 / 203

to FALSE.
menutoggle: Set this to TRUE if the item is a Checkmark item and you

wish to be able to toggle the state by repeated selection of
the item. If this is FALSE and the item is a Checkmark
item, the only way for the item to become un-checked is by
mutual-exclusion which is not currently supported by FoxGUI.

Returns:

If successful, a pointer to the new menu item is returned. In the event
of failure, NULL is returned.

Known bugs:

None.

See also:

AddMenu

AddSubMenuItem

ClearMenus

DisableMenuItem

EnableMenuItem

SetWinMenuFn

ShareMenus

1.69 AddSubMenuItem function

Function prototype:

struct MenuItem *AddSubMenuItem(GuiWindow *win, struct MenuItem

*menuitem, char *name, char *selname, unsigned short flags, int key,
int enabled, int checkit, int checked, int menutoggle);

Description:

Adds a sub-menu item to the specified existing menu item in the
specified window. Note that each menu item may have a maximum of 31
sub-menu items.

Parameters:

menuitem: A pointer to an item in an existing menu structure. This item
will become the parent item for the sub-menu item created. If
the parent item already has sub-menu items then the new one
will be added to the end of the sub-menu, otherwise a new
sub-menu will be created with this item being the first in the

foxgui 74 / 203

new sub-menu. AddSubMenuItem will fail if the menuitem
specified to be the parent is itself a sub-menu item as
sub-sub-menu items are not supported.

All other parameters are identical to the parameters of the function

AddMenuItem
.

Returns:

If successful, a pointer to the new sub-menu item is returned. In the
event of failure, NULL is returned.

Known bugs:

None.

See also:

AddMenu

AddMenuItem

ClearMenus

DisableMenuItem

EnableMenuItem

SetWinMenuFn

ShareMenus

1.70 ClearMenus function

Function prototype:

void ClearMenus(GuiWindow *win);

Description:

Removes all top-level menus, menu items and sub-menu items from the
specified Gui window. If the menus are shared with other Gui windows,
the other windows remain unaffected. If the menus are not shared with
other windows, all the resources used by the menus are released. You
should always call ClearMenus before closing a Gui window which has
menus.

Parameters:

win: The Gui window whose menus are to be cleared.

foxgui 75 / 203

Known bugs:

None.

1.71 DisableMenu function

Function prototype:

BOOL DisableMenu(GuiWindow *win, struct Menu *menu);

Description:

Disables the specified top-level menu in the specified window and all
other windows which share the same menu strip. This prevents the menu
from being dropped and hence prevents selection of any of the menu items
within it. The menu text will appear ghosted.

Parameters:

win: A pointer to the window containing the menu to be disabled.
menu: A pointer to the top-level menu to be disabled.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

DisableMenuItem

DisableWinMenus

EnableMenu

EnableMenuItem

EnableWinMenus

1.72 DisableMenuItem function

Function prototype:

BOOL DisableMenuItem(GuiWindow *win, struct MenuItem *item);

Description:

foxgui 76 / 203

Disables the specified menu-item in the specified window and all other
windows that share the same menu strip. The item text will appear
ghosted and will become un-selectable.

Parameters:

win: A pointer to the Gui window containing the menu item.
item: A pointer to the item to be disabled.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

DisableMenu

DisableWinMenus

EnableMenu

EnableMenuItem

EnableWinMenus

1.73 DisableWinMenus function

Function prototype:

BOOL DisableWinMenus(GuiWindow *win);

Description:

Disables all menus in the window specified and all other windows that
share the same menu strip.

Parameters:

win: A pointer to the Gui window whose menus are to be disabled.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

foxgui 77 / 203

DisableMenu

DisableMenuItem

EnableMenu

EnableMenuItem

EnableWinMenus

1.74 EnableMenu function

Function prototype:

BOOL EnableMenu(GuiWindow *win, struct Menu *menu);

Description:

Enables the specified top-level menu in the specified window and all
other windows which share the same menu strip.

Parameters:

win: A pointer to the window containing the menu to be enabled.
menu: A pointer to the top-level menu to be enabled.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

DisableMenu

DisableMenuItem

DisableWinMenus

EnableMenuItem

EnableWinMenus

1.75 EnableMenuItem function

foxgui 78 / 203

Function prototype:

BOOL EnableMenuItem(GuiWindow *win, struct MenuItem *item);

Description:

Enables the specified menu-item in the specified window and all other
windows that share the same menu strip.

Parameters:

win: A pointer to the Gui window containing the menu item.
item: A pointer to the item to be enabled.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

DisableMenu

DisableMenuItem

DisableWinMenus

EnableMenu

EnableWinMenus

1.76 EnableWinMenus function

Function prototype:

BOOL EnableWinMenus(GuiWindow *win);

Description:

Enables all menus in the window specified and all other windows that
share the same menu strip.

Parameters:

win: A pointer to the Gui window whose menus are to be enabled.

Returns:

TRUE for success, FALSE for failure.

foxgui 79 / 203

Known bugs:

None.

See also:

DisableMenu

DisableMenuItem

DisableWinMenus

EnableMenu

EnableMenuItem

1.77 IsMenuChecked function

Function prototype:

BOOL IsMenuChecked(struct MenuItem *mi);

Description:

Determines whether or not the specified checkmark menu item is checked.

Parameters:

mi: A pointer to a menu item.

Returns:

TRUE if the specified menu item is checked, FALSE otherwise.

Known bugs:

None.

See also:

AddMenuItem

SetMenuChecked

1.78 RemoveMenuItem function

foxgui 80 / 203

Function prototype:

BOOL RemoveMenuItem(GuiWindow *win, struct MenuItem *item);

Description:

Removes the specified menu item from it’s parent menu in the specified
window. If the menu strip for that window is shared with other windows
then the item is removed from all of those windows. If the item has
sub-menu items below it then that sub-menu will also be removed.

Parameters:

win: The window from which a menu item is to be removed.
item: A pointer to the menu item which is to be removed. If the item is

removed successfully then this pointer will no-longer point to a
meaningful structure and should be discarded.

Returns:

TRUE if the item was removed successfully, FALSE otherwise.

Known bugs:

Currently can’t be used to remove a sub-menu item or a top-level menu.
These can only be removed by clearing the menu strip using the

ClearMenus
function and creating the menus again.

See also:

AddMenuItem

ClearMenus

DisableMenu

1.79 SetMenuChecked function

Function prototype:

BOOL SetMenuChecked(GuiWindow *win, struct MenuItem *item, BOOL
checked);

Description:

Sets the state of a checkmark menu item.

Parameters:

win: A pointer to the GuiWindow containing the menu item.

foxgui 81 / 203

item: A pointer to the menu item.
checked: TRUE of you want the menu to become checked, FALSE otherwise.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

AddMenuItem

IsMenuChecked

1.80 SetWinMenuFn function

Function prototype:

void SetWinMenuFn(GuiWindow *win, int (*fn)
(GuiWindow*, struct MenuItem *))

Description:

Set or change the function to be invoked when an action menu in the
specified window is selected. This function allows the programmer to
write his/her own function which will be called whenever the user
selects an action menu in the specified window. Windows that share
menus do not necessarily have to have the same menu function so if you
want two windows to share the same menu function it is necessary to call
SetWinMenuFn once for each window.

Parameters:

win: The Gui window whose menu function you wish to set.
fn: A pointer to the menu function for the specified window. The

function should have the following prototype:
int MyWindowMenuFunction(GuiWindow *WhichWindow, struct MenuItem * ←↩

WhichMenuItem);
The function will be passed a pointer to the menu item that
was selected and the window it was attached to. It should return
either

GUI_CONTINUE
or
GUI_END

.

Known bugs:

None.

foxgui 82 / 203

See also:

AddMenu

OpenGuiWindow

ShareMenus

1.81 ShareMenus function

Function prototype:

void ShareMenus(GuiWindow *dest, GuiWindow *source);

Description:

Causes a set of menus to be shared between two or more windows. When a
number of windows share the same menu strip, most FoxGUI menu functions
which are applied to that menu strip will affect the menus in all of
those windows (the only current exception being the function

SetWinMenuFn
which only affects the window passed as it’s second parameter). ←↩

For
example, if windows A and B share the same menu strip and AddMenu is
called to add a new top-level menu to window A, it will also be added to
window B.

In order to make Window B share menus already created for Window A, call
ShareMenus(B, A). If window B already has menus they will be cleared.
In order to then use the same menus for a third window C you could
either use ShareMenus(C, B) or ShareMenus(C, A).

Parameters:

dest: A pointer to the Gui window to which the menus will be applied.
source: A pointer to the Gui window whose existing menus are to be shared.

Known bugs:

The source window must have at least one top-level menu attached to it
for ShareMenus to work. If it hasn’t, the function won’t cause them to
share menus. As long as source has one top-level menu when ShareMenus
is called, any other alterations to the menu structure of either window
will affect both.

See also:

AddMenu

SetWinMenuFn

foxgui 83 / 203

1.82 FoxGUI Button functions

Buttons are probably the most commonly used intuition "gadgets" so ←↩
I’ve

made them very simple. The functions below should all be obvious by their
names. If not then you’ll just have to read the function descriptions!
Buttons can have images attached to them (drawn on them) - see the

AttachBitMapToControl
function.

The following button functions are currently available :-

MakeButton
See also:

Destroy

DisableControl

EnableControl

SetDelay

SetPeriod

AttachBitMapToControl

1.83 MakeButton function

Function prototype:

PushButton *MakeButton(void *Parent, char *name, int left, int top, int
width, int height, int key, struct Border *cb, int
(*callfn) (PushButton*), short flags, void *extension)

Description:

Create a FoxGUI button in the specified window or frame with the
attributes specified. The button will automatically be enabled and when
the user clicks the button the function specified in callfn will be
invoked and passed a pointer to the button that was clicked.

Parameters:

Parent: A pointer to an open FoxGUI window or frame in which to place
the new button.

name: The text to appear as the buttons caption. If you don’t want a
caption, set this to "" or NULL. If you want the button to have
a hot-key (a key that is used to activate the button from the
keyboard) then you should pass the relevant character in the

foxgui 84 / 203

"key" parameter. If that key is one of the characters of the
buttons caption then you can preceed that character by an
underscore ("_") and that character will be underlined in the
button caption. For example, for an okay button you might pass
"O_kay" in which case the k will be underlined. If the caption
for the button is too long to fit it then it will be truncated -
the caption will never extend beyond the button’s border. If
the button gets resized (due to a window being resized) then
more of the caption may become visible - i.e. FoxGUI remembers
the whole caption not just the visible bit.

left: The coordinate of the left edge of the button relative to
the left edge of the window/frame. If you prefer, you can
specify a negative value here and that will be taken to mean an
offset of the left hand edge of the button from the right hand
edge of the window/frame. If the window/frame gets resized,
this will also cause the button to move to remain at the same
offset from the right hand edge of the window/frame.

top: The coordinate of the top edge of the button relative to the
top edge of the window/frame. Note that this is from the very
top of a window so a y coordinate of 0 would cause the button to
be at least partly obscured by the window’s title bar if it had
one. If you prefer, you can specify a negative value here and
that will be taken to mean an offset of the top edge of the
button from the bottom edge of the window/frame. If the
window/frame gets resized, this will also cause the button to
move to remain at the same offset from the bottom of the
window/frame.

width: The width of the button in pixels.
height: The height of the button in pixels.

key: The button’s hot key. For example, to make the hot key the
letter k, pass ’k’.

cb: If you want your button to have some form of custom imagery not
directly supported by MakeButton, you can create your own
intuition border structure and pass a pointer to it as cb. This
will be displayed as well as the standard button border and
caption (if there is one). It’s main use is to draw a simple
picture on the button in place of a caption. The caption is
ommitted by passing the name as "".

callfn: A pointer to the function to be called when the button is
clicked. The function should have the following prototype:

int CALLBACK MyButtonFunction (PushButton*);

When it is invoked, it will be passed a pointer to the button
that was clicked (this allows you to have one button function
which handles all of your buttons if you wish. Of course you
could alternatively have a different function for each button in
which case the parameter would be redundant). It should return
either

GUI_CONTINUE
or
GUI_END

.
flags: The following flags are available for buttons: BN_CLEAR, BN_AR,

BN_STD, BN_OKAY, BN_CANCEL
S_AUTO_SIZE
and S_FONT_SENSITIVE.

foxgui 85 / 203

If BN_CLEAR is set then the background colour of the button will
be the same colour as the window that the button is created in
and the bcol parameter will be ignored. If you want to attach
an image to a button then the button must be created with this
flag specified. Clear buttons are drawn more quickly than
coloured buttons. If you don’t specify the BN_CLEAR flag but
the bcol parameter is the same as the background colour of the
window then the button won’t be treated as clear so it will take
marginally longer to refresh. If buttons are not clear then the
whole button area is refreshed when necessary. If they are
clear then only the border is refreshed.
BN_OKAY and BN_CANCEL allow either the return key or the escape
key respecively to be used as an extra hot-key for the button.
An example of how you might use these would be some sort of
preferences window where the user can modify several controls
(eg tick boxes, drop-down list boxes, edit boxes etc) and then
either cancel or accept the action. You might have two buttons
in the window labelled "Okay" and "Cancel" which have O and C as
their respective hot-keys but where the Okay button has BN_OKAY
set and the Cancel button has BN_CANCEL set so that the
preferences could also be accepted or cancelled by pressing return
or escape.
If the S_FONT_SENSITIVE flag is specified then the buttons
height and width are set according to the height and width of
the text on the button and the height and width parameters are
ignored. Buttons with this flag set do not resize when in a
resizable window (although they do still move as necessary).
The other two flags are mutually exclusive. BN_STD specifies
that this is a standard button, BN_AR specifies that it is an
auto-repeating button. If you click on a standard button, the
function is activated when the button is released. If the
mousepointer is moved off the button before it is released then
the function isn’t called. An auto-repeat button is activated
immediately that the button is clicked and is repeatedly
activated while the button is held down. The delay between each
activation of the button can be set by calling

SetDelay
and

SetPeriod
.

extension: This is for future expansion and should be set to NULL.

Returns:

If successful, a pointer to the new FoxGUI button is returned. If
unsuccessful, NULL is returned.

Known bugs:

None.

See also:

Destroy

foxgui 86 / 203

DisableControl

EnableControl

SetDelay

SetPeriod

AttachBitMapToControl

1.84 FoxGUI Boolean Gadget functions

The boolean gadgets supported by FoxGUI are tick-boxes and radio ←↩
buttons.

A Tick-box is a small square button with a tick in it (or not as the case
may be). You make the tick appear or disappear by clicking on the button.
Usually a tick specifies that some option is turned on and lack of a tick
means that it is turned off.

Radio buttons are another type of boolean gadget. These are grouped
together and selecting one causes any other in the same group to become
de-selected (i.e. they are mutually exclusive) like the buttons on the
front of old radios if you are old enough to remember them!

The following boolean gadget functions are currently available :-

ActiveRadioButton

MakeRadioButton

MakeTickBox

SetTickBoxValue

TickBoxValue
See also:

Destroy

DisableControl

EnableControl

1.85 ActiveRadioButton function

Function prototype:

RadioButton *ActiveRadioButton(RadioButton *rb);

foxgui 87 / 203

Description:

Given a pointer to any FoxGUI radio button, this function returns a
pointer to the currently selected radio button in that group.

Parameters:

rb: A pointer to a FoxGUI radio button.

Returns:

A pointer to the currently selected radio button in the same group as
the radio button passed as a parameter. If no radio button is selected
in that group or if an error occurs, this function returns NULL.

Known bugs:

None.

See also:

MakeRadioButton

1.86 MakeRadioButton function

Function prototype:

RadioButton *MakeRadioButton(void *Parent, RadioButton *MutEx, int left,
int top, int width, int height, int fillcol, int (*callfn)
(RadioButton*), int flags, void *extension)

Description:

Make a new FoxGUI radio button in the specified FoxGUI window or frame.

Parameters:

Parent: A pointer to an open FoxGUI window or frame in which to
create the new radio button.

MutEx: A pointer to another radio button which you want to be
mutually exclusive with this one (i.e. in the same group).
When creating the first radio button in a group, set this
parameter to NULL. When creating subsequent radio buttons
in the group, this parameter can point to any one of the
radio buttons already created and the whole group will be
mutually exclusive (i.e. selecting any one member in the
group will cause any other button in the group that was
previously selected to become un-selected).

left: The distance in pixels between the left edge of the
window/frame and the left edge of the selectable part of the
radio button. Remember to leave enough room for the caption
on either the left or right of the radio button itself.

foxgui 88 / 203

top: The distance in pixels between the top edge of the
window/frame and the top edge of the radio button.

width: The width of the selectable part of the radio button (in
pixels).

height: The height of the radio button in pixels.
fillcol: When a radio button is selected, the centre of the button

gets filled in the colour specified in this parameter.
Unselected radio buttons are not filled.

callfn: A function to call when this radio button is selected by the
user. The function will be passed a pointer to the radio
button selected so if you like you can use the same function
for all of the radio buttons in a group or even all of the
radio buttons in an application. If you don’t want to
perform any special action immediately that the radio button
is selected, you can pass NULL for this parameter. If you
do specify a function, it should have the following
prototype :-

int CALLBACK MyRadioButtonFn (RadioButton *WhichRadioButton);

and should return either
GUI_CONTINUE
or

GUI_END
.

flags: Currently, there are only two valid flags for radio
buttons: BG_SELECTED causes the radio button to be the
initially selected radio button in the group. Obviously you
should only set this flag for one radio button in each
group. Radio buttons will auto-size when their window is
resized if the

S_AUTO_SIZE
flag is selected.

extension: This is reserved for future expansion and should be set to
NULL.

Returns:

If successful, a pointer to the new radio button. If not, NULL.

Known bugs:

None.

See also:

SetPreText

SetPostText

ActiveRadioButton

Destroy

foxgui 89 / 203

1.87 SetTickBoxValue function

Function prototype:

BOOL SetTickBoxValue(TickBox *tb, BOOL value);

Description:

Set the current value of the specified tick box.

Parameters:

tb: The tick box whose value you want to set.
value: TRUE if you want the tick box to be ticked, FALSE otherwise.

Returns:

TRUE if the function succeeds, FALSE otherwise.

Known bugs:

None.

See also:

TickBoxValue

MakeTickBox

1.88 TickBoxValue function

Function prototype:

BOOL TickBoxValue(TickBox *tb);

Description:

Find the current value of the specified tick box.

Parameters:

tb: The tick box whose value you want to know.

Returns:

TRUE if the tick box is ticked, FALSE otherwise.

Known bugs:

None.

See also:

foxgui 90 / 203

SetTickBoxValue

MakeTickBox

1.89 MakeTickBox function

Function prototype:

TickBox *MakeTickBox(void *Parent, int left, int top, int width, int height,
int (*callfn) (TickBox*), int flags, void *extension)

Description:

Make a new tick box gadget.

Parameters:

Parent: The Gui window or frame in which the new tick box is to be
created.

left: The left edge of the tick box in pixels from the left edge
of the window/frame.

top: The top edge of the tick box in pixels from the top edge of
the window/frame.

width: The width of the tick box in pixels.
height: The height of the tick box in pixels.
callfn: A function to call whenever the user changes the state of

the tick box by clicking on it with the mouse. The
prototype for the function should be as follows:
int CALLBACK MyTickBoxFunction(TickBox *WhichTickBox);
The function will be passed a pointer to the tick box that
was clicked and should return either

GUI_CONTINUE
or

GUI_END
.

flags: Currently, there are only three valid flags for tick boxes :-
BG_SELECTED causes the tick box to be ticked initially. The
BG_CLEAR flag causes the tick box to be clear (i.e. the
same colour as the window). Clear tick boxes are drawn and
refreshed more quickly than filled ones. The

S_AUTO_SIZE
flag causes the tick box to auto-size.

extension: This is reserved for future expansion and should be set to
NULL.

Returns:

If successful, a pointer to the new tick box is returned. If the
function fails then NULL is returned.

Known bugs:

foxgui 91 / 203

None.

See also:

Destroy

SetPreText

SetPostText

TickBoxValue

1.90 FoxGUI Editbox functions

Edit boxes are Intuition string gadgets. They are containers into ←↩
which

the user can type text. If there are several in a window (and you are
using OS version 2.0 or above) you can switch between edit boxes using tab
and shift-tab. FoxGUI supplies three default filters for edit boxes:
TEXT, INT and FLOAT. INT edit boxes are for capturing integral numbers.
The user can type digits and a preceeding + or - sign only. All other
characters are rejected. FLOAT also allows the . symobol allowing
floating point numbers to be entered and TEXT allows anything to be typed.
The default filter is TEXT and is supported under all versions of the Amiga
OS. The INT filter is supported from release 2.00 onwards and the FLOAT
filter is supported in Intuition version 36 and above. In a FLOAT filtered
edit box, you can also specify the number of digits allowed after the
decimal point using

SetEditBoxDP
. Functions are available for setting

the text in edit boxes as well as for retrieving text or numbers that the
user has entered.

The following editbox functions are currently available :-

GetEditBoxDouble

GetEditBoxID

GetEditBoxInt

GetEditBoxText

MakeEditBox

RefreshEditBox

SetEditBoxCols

SetEditBoxDP

foxgui 92 / 203

SetEditBoxDouble

SetEditBoxFocus

SetEditBoxInt

SetEditBoxText
See also:

Destroy

DisableControl

EnableControl

1.91 GetEditBoxDouble function

Function prototype:

double GetEditBoxDouble(EditBox *p);

Description:

Converts the text in the specified edit box into a double-precision
floating point number and returns the result. On Intuition version 36
or higher, an edit box created with type FLOAT_EDIT is filtered so that
a user can only type floating point numbers into it. In this case
GetEditBoxDouble will usually succeed (note that even under these
circumstances it is possible for a FLOAT_EDIT edit box to contain text
which cannot be interpreted as a floating point number but only if it
has been set from within the program by use of the function

SetEditBoxText
. If the number cannot be interpreted as

a floating point number then anything may be returned. You can control
the number of decimal places that the user can type into a FLOAT_EDIT
edit box using the function

SetEditBoxDP
.

Parameters:

p: A pointer to the edit box.

Returns:

A double-precision floating point number whose value is the text in the
specified edit box.

Known bugs:

None.

foxgui 93 / 203

See also:

GetEditBoxInt

GetEditBoxText

MakeEditBox

SetEditBoxDP

SetEditBoxDouble

1.92 GetEditBoxInt function

Function prototype:

int GetEditBoxInt(EditBox *p);

Description:

Converts the text in the specified edit box into an integer and returns
the result. On OS version 2.00 or higher, an edit box created with type
INT_EDIT is filtered so that a user can only type integral numbers into
it. In this case GetEditBoxInt will usually succeed (note that even
under these circumstances it is possible for an INT_EDIT edit box to
contain text which cannot be interpreted as an integer but only if it
has been set from within the program by use of the functions

SetEditBoxText
or
SetEditBoxDouble

. If the number cannot be
interpreted as an integer then anything may be returned.

Parameters:

p: A pointer to the edit box.

Returns:

An integer whose value is the text in the specified edit box.

Known bugs:

None.

See also:

GetEditBoxDouble

GetEditBoxText

foxgui 94 / 203

MakeEditBox

SetEditBoxInt

1.93 GetEditBoxText function

Function prototype:

char *GetEditBoxText(EditBox *p);

Description:

Get the current text in the specified edit box.

Parameters:

p: A pointer to the edit box.

Returns:

A pointer to a NULL terminated text string which is the text contained
in the specified edit box. The pointer returned is a pointer to the
actual buffer used by the edit box so you should never directly modify
this string in any way. If you keep a copy of the pointer you should
also remember that it will become invalid when the edit box is
destroyed. The safest thing to do is make your own copy of the string
using a function such as strcpy.

Known bugs:

None.

See also:

GetEditBoxDouble

GetEditBoxInt

MakeEditBox

SetEditBoxText

1.94 MakeEditBox function

Function prototype:

EditBox *MakeEditBox(void *Parent, int x, int y, int len, int buflen,
int id, BOOL (*callfn) (EditBox*), long flags, void *extension);

foxgui 95 / 203

Description:

Creates a new edit box in the specified window or frame.

Parameters:

Parent: A pointer to an open GuiWindow or frame in which to create the
editbox.

x: The coordinate of the left edge of the new edit box relative to
the left hand edge of the specified window/frame.

y: The coordinate of the top edge of the new edit box relative to
the top edge of the specified window/frame. Note that this is
from the very top of a window so a y coordinate of 0 would cause
the editbox to be at least partly obscured by the window’s title
bar if it had one.

len: The length in pixels of the edit box. This length includes the
border drawn around the edit box.

buflen: The maximum number of characters that the user will be able to
type into the new edit box. This number cannot be more than
256.

id: This parameter can have any integral value. It won’t affect the
way the edit box behaves but it will get stored as part of the
edit box structure and you can find out the value of any edit
boxes id using the function

GetEditBoxID
. The main use for this

is when creating arrays of edit boxes. For example, if you
wanted the user to enter their address you might create an array
of edit boxes like this:

EditBox *ebAddress[5];
int l;

for (l = 0; l < 5; l++)
{

ebAddress[l] = MakeEditBox(MyWin, 80, 80 + (10 * l), 244, 30,
l, AddrValidate, THREED | TEXT_EDIT, NULL);

}

Because l has been passed to MakeEditBox as the id for each
address line, the five address lines will have different ids,
ranging from 0 to 4. Now, let’s say for example that you wanted
to keep a record of the number of characters in each address
line. You could define an array of integers like this:

int numAddrChars[5];

And use your validation function (see the callfn parameter
below) for the address line edit boxes to update your array like
this:

BOOL CALLBACK AddrValidate(EditBox *eb)
{

// Find out which address line has been changed.
int index = GetEditBoxID(eb);

// Update the character count

foxgui 96 / 203

numAddrChars[index] = strlen(GetEditBoxText(eb));
return TRUE;

}

Without the id parameter, you would have to check each edit box
pointer of the array in turn against the pointer passed to the
validation function which would be very innefficient.

callfn: A pointer to a validation function for the edit box. This
function will be called whenever the edit box loses focus (e.g.
if the user has been typing in this box and then presses the tab
key to activate the next edit box or clicks elsewhere in the
window using the mouse). The function should have the following
prototype:

BOOL CALLBACK MyValidationFunction(EditBox *MyEditBox);

When FoxGUI activates your validation function it will pass a
pointer to the edit box that triggered it so that you can use
one validation function for more than one edit box (if you wish)
and still determine which edit box has just been deactivated.
In order to validate the data you will obviously need to know
what the user has typed into your edit box and you can use one
of the functions

GetEditBoxDouble
,
GetEditBoxInt
or

GetEditBoxText
to find this out. If you decide that what the

user has typed is invalid, you may wish to tell the user so
using the

GuiMessage
function and you may want to force the

user to correct it by re-activating the edit box (see below).
Of course, your validation function can perform other action
apart from validation. If the edit box was of type INT_EDIT or
FLOAT_EDIT you may want to use the number they have entered for
some form of calculation and display the result in an output box
or another edit box. The function can really do whatever you
want it to. Unlike other call-back functions, this one should
return TRUE or FALSE. As mentioned above, if the user enters
invalid data you might want to re-activate the edit box to force
them to correct it. If your function returns FALSE then FoxGUI
will re-activate the edit box for you (overriding any calls made
to the

SetEditBoxFocus
function). If the data is valid or you

don’t want the edit box re-activated for any other reason then
you should return TRUE. You should take great care when
returning FALSE from this function - if the user has deactivated
the edit box by clicking on another control then that control
will not get activated unless this function returns TRUE. For
example, if the user types invalid data into an edit box and
then clicks on a tick box, the tick box will not change value
and it’s call-back function will not be activated unless the

foxgui 97 / 203

call-back function for the edit box returns TRUE. The only
gadgets that the user will be able to activate under these
conditions are gadgets in other applications, some system
gadgets in the current application and scroll-bars. For
example, the user could scroll a list box or resize the window
while the edit box text was invalid but the focus would be
returned to the edit box immediately afterwards. The function

SetEditBoxFocus
, when called from within an edit boxes

call-back function is not as clever. If you want to set the
focus back to the edit box that just lost it then return FALSE,
don’t use SetEditBoxFocus. If you want to set the focus to a
different edit box then use SetEditBoxFocus but do it as near to
the end of the function as possible (calling GuiMessage, for
example after a call to SetEditBoxFocus would completely ruin
the effect of the call to SetEditBoxFocus becuase the window
popping up will cause the edit box to lose focus again). If you
are going to do anything that causes the focus to go anywhere
other than where the user is expecting it to go it is polite to
tell the user why (with a call to GuiMessage for example)
otherwise you could completely confuse your user.

flags: Currently, the following flags are available for edit boxes:
THREED, TEXT_EDIT, INT_EDIT, FLOAT_EDIT, NO_EDIT,

S_AUTO_SIZE
and

EB_CLEAR. Set the THREED flag if you want the border around the
edit box to have a three dimensional look (it will appear
slightly inset or pressed into the screen and will be drawn in
the current FoxGUI pens which can be modified by calling

SetGuiPens
). If you do not select the THREED flag then you

will get a simple rectangle drawn around the editable area in
the current default border colour. EB_CLEAR specifies that the
edit box will be clear (i.e. see-through). In other words, the
background colour of the edit box will be the colour of the
window or frame in which it was created. The other four flags
are mutually exclusive. You can select at most one of the four
but any of the four may be combined with the THREED and EB_CLEAR
flags. All four _EDIT flags specify the filtering that will be
applied to the edit box when the user types data into it.
TEXT_EDIT allows the user to type absolutely any text into the
edit box. INT_EDIT allows the user to enter integral numbers
only. FLOAT_EDIT allows floating point or integral numbers to
be entered (floating point numbers are those with a decimal
point e.g. 3.14159). For FLOAT_EDIT edit boxes, the number of
figures after the decimal point can be restricted using the
function

SetEditBoxDP
. NO_EDIT prevents any text from being

entered into the edit box at any time (whether the edit box is
currently enabled or disabled) - I have no idea why you would
want to use this. If you do not select any of the _EDIT flags
then TEXT_EDIT is used by default.

extension: This is reserved for future expansion and should be set to NULL.

foxgui 98 / 203

Returns:

If successful a pointer to the new edit box is returned. NULL is
returned if MakeEditBox fails.

Known bugs:

None.

See also:

Destroy

DisableControl

EnableControl

GetEditBoxDouble

GetEditBoxInt

GetEditBoxText

RefreshEditBox

SetEditBoxCols

SetEditBoxDP

SetEditBoxDouble

SetEditBoxFocus

SetEditBoxInt

SetEditBoxText

1.95 RefreshEditBox function

Function prototype:

void RefreshEditBox(EditBox *p);

Description:

Refresh the imagery of the specified edit box. You might want to do
this if you have used a function such as

DisableM
which has

changed the state of one or more edit boxes without refreshing the
imagery (all functions which change the state of an editbox can be
instructed to refresh the imagery for you if you prefer).

foxgui 99 / 203

Parameters:

p: A pointer to the edit box to be refreshed.

Known bugs:

None.

See also:

Destroy

DisableControl

EnableControl

1.96 SetEditBoxCols function

Function prototype:

BOOL SetEditBoxCols(EditBox *p, int BorderCol, int Bcol, int Tcol);

Description:

Changes the colours of an edit box to the new ones specified and
refreshes the edit box imagery.

Parameters:

p: A pointer to the edit box whose colours are to be changed.
BorderCol: The pen colour for the border.

Bcol: The background pen colour for the edit box (ignored prior to
Intuition version 37).

Tcol: The pen colour for the text within the edit box.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

MakeEditBox

SetEditBoxDP

SetEditBoxFocus

foxgui 100 / 203

1.97 SetEditBoxDP function

Function prototype:

BOOL SetEditBoxDP(EditBox *p, int num);

Description:

Set (or change) the maximum number of figures that can be entered after
the decimal point in an edit box of type FLOAT_EDIT. This function can
be called at any point after the edit box is created so you should bear
in mind that if the user has already had a chance to type text into the
edit box then there may already be more digits after the decimal point
than you want. Calling this function will not remove any extra digits
that are already after the decimal point but this can be done by using

GetEditBoxDouble
to get the current value in the edit box and then

SetEditBoxDouble
which will truncate the number to the correct number

of decimal places when setting the new value. For edit boxes of types
other than FLOAT_EDIT, SetEditBoxDP won’t prevent the user from typing
more than the specified number of decimal places into the text box but
it will affect the way

SetEditBoxDouble
behaves when it is called for

that edit box.

Parameters:

p: A pointer to the edit box to modify.
num: The maximum number of digits to allow after the decimal point in

the specified edit box.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

GetEditBoxDouble

MakeEditBox

SetEditBoxDouble

foxgui 101 / 203

1.98 SetEditBoxDouble function

Function prototype:

BOOL SetEditBoxDouble(EditBox *p, double num);

Description:

Set the text in the specified edit box to the number supplied. The
number will be truncated to the maximum number of decimal places allowed
in the edit box as set by the function

SetEditBoxDP
. This is true for

all edit boxes, not just those of type FLOAT_EDIT. For example, the
following code will cause the text in MyEditBox to be set to "3.14":

float pi = 3.14159265;
SetEditBoxDP(MyEditBox, 2);
SetEditBoxDouble(MyEditBox, pi);

Parameters:

p: A pointer to the edit box whose text is to be changed.
num: The double-precision floating point number whose value is to be

converted to text, possibly truncated and placed in the edit box.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

GetEditBoxDouble

MakeEditBox

SetEditBoxDP

SetEditBoxInt

SetEditBoxText

1.99 SetEditBoxFocus function

Function prototype:

BOOL SetEditBoxFocus(EditBox *p);

foxgui 102 / 203

Description:

Attempts to activate the edit box specified. If successful, a cursor
will appear in the edit box and the user will then be able to type data
into it.

Parameters:

p: A pointer to the edit box to be activated.

Returns:

SetEditBoxFocus will return TRUE if Intuition claims to have
successfully activated the edit box. Otherwise FALSE will be returned.
Intuition might fail to activate the edit box if for example the user is
holding the right mouse button down to display the menus. FALSE will be
returned if the edit box is currently disabled.

Known bugs:

None.

See also:

Notes on the use of SetEditBoxFocus in edit box call-back functions
(

MakeEditBox
).

DisableControl

EnableControl

RefreshEditBox

1.100 SetEditBoxInt function

Function prototype:

BOOL SetEditBoxInt(EditBox *p, int num);

Description:

Sets the edit box text to the number supplied.

Parameters:

p: A pointer to the edit box whose value is to be changed.
num: The number to convert to text and place in the edit box.

Returns:

TRUE for success, FALSE for failure.

foxgui 103 / 203

Known bugs:

None.

See also:

GetEditBoxInt

MakeEditBox

SetEditBoxDouble

SetEditBoxText

1.101 SetEditBoxText function

Function prototype:

BOOL SetEditBoxText(EditBox *p, char *text);

Description:

Set the text in the specified edit box to the string supplied.

Parameters:

p: A pointer to the edit box whose value is to be changed.
text: A pointer to a text string to copy into the edit box. A copy

will be made of the text string supplied so there is no need to
preserve the string passed after calling the function.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

GetEditBoxText

MakeEditBox

SetEditBoxDouble

SetEditBoxInt

foxgui 104 / 203

1.102 GetEditBoxID function

Function prototype:

int GetEditBoxID(EditBox *p)

Description:

Returns the id of the specified edit box. For a full description of
edit box ids, see

MakeEditBox
.

Parameters:

p: A pointer to the edit box whose id you want to know.

Returns:

The id of the edit box specified.

See also:

MakeEditBox

1.103 FoxGUI Tree Control functions

Tree Controls are similar to
ListBoxes
in that they contain a list of

items which can be selected with a single or double click and scrolled
through with horizontal and vertical scrollers if the list contains more
items than the box can show or if the items are too wide for the box.
Unlike a list box, however, items are represented in a tree structure
(rather like a family tree drawn sideways so that the parent items are on
the left of the box and children are indented). Parent items in a tree
control can be opened and closed so that their children are either visible
or hidden - the user can do this by clicking on a small box with a plus or
minus sign which will appear to the left of any item which has children.
Clicking on the box will open or close the parent item so that the children
are hidden or shown. The box will contain a - when the children are shown
and a + when they are hidden. An image can also be shown to the left of
the text of an item if you so wish. This is most commonly used when a tree
control is used to represent a disk where the top level is the root
directory of the disk (which might have a picture of a disk!) and the
children are files and directories on that disk where directories would all
have a common picture so that the user can tell at a glance that they are
directories. Files might have different pictures which depend on the file
type or may have no picture at all. In a tree control, user defined data
can be associated with any item in the control. For example, going back to
our disk example, the programmer may have gathered information about the
size of each file and the file attributes. He might choose to store these

foxgui 105 / 203

in a structure for which he has one instance per file and the data
associated with the item in the tree control could be a pointer to the
relevant instance of that structure. In this way it would be wasy for the
programmer to show the user the size and attributes of the file selected.

The following tree control functions are currently available :-

AddItem

ClearTreeControl

CloseItem

FindTreeItem

ItemData

ItemIsOpen

MakeTreeControl

OpenItem

RemoveItem

ReplaceTCItem

SetTreeControlDragPointer

SetTreeControlHiItem

TCHiItem

TCHiText

TCItemText
See also:

Destroy

Hide

Show

DisableControl

EnableControl

1.104 AddItem function

Function prototype:

foxgui 106 / 203

TreeItem *AddItem(TreeControl *tc, TreeItem *InsBefore, TreeItem

*Parent, char *text, BOOL IsOpen, GuiBitMap *bm, void *ItemData);

Description:

Adds an item to a tree control.

Parameters:

tc: A pointer to the tree control.
InsBefore: If ordering of items is important in your tree control, you

can pass a pointer to an existing item in the tree control
and the new item will be inserted before it. If ordering is
not important, set this to NULL.

Parent: If the new item is to be a child of an existing item, pass a
pointer to that item, otherwise NULL.

text: The text of the item to add.
IsOpen: Whether or not the item is open. This has no effect when you

first add the item but if you subsequently add an item as a
child of this one, then this item will default to being
closed (i.e. not showing the child) unless you set this to
TRUE.

bm: A pointer to a bitmap to display to the left of the item’s
text. If the bitmap is taller than the font used for the
tree control then the bitmap will be scaled down to the
height of the text and the width will also be scaled
proportionately. You should load the bitmap using the

LoadBitMap
function and you should not free the bitmap

(using the
FreeGuiBitMap
function) until either the item has

been removed from the tree control or the tree control has
been destroyed.

ItemData: A pointer to data associated with this item. You can
retrieve a pointer to the item data of the hilighted item
by calling ItemData(TCHiItem(MyTreeControl)). Pass NULL if
you do not want to associate any data with this item.

Returns:

If successful, a pointer to the new tree item, otherwise NULL.

Known bugs:

None.

See also:

ClearTreeControl

CloseItem

ItemData

foxgui 107 / 203

ItemIsOpen

MakeTreeControl

OpenItem

RemoveItem

SetTreeControlHiItem

TCHiItem

TCHiText

TCItemText

1.105 ClearTreeControl function

Function prototype:

void ClearTreeControl(TreeControl *tc);

Description:

Clears a tree control of all items.

Parameters:

tc: A pointer to the tree control to clear.

Known bugs:

None.

See also:

Destroy

RemoveItem

1.106 CloseItem function

Function prototype:

void CloseItem(TreeItem *it);

Description:

foxgui 108 / 203

Close an open tree control item, hiding it’s children. This function
has exactly the same effect as the user clicking on the +/- button of
an open tree control item.

Parameters:

ti: A pointer to the item to close.

Known bugs:

None.

See also:

OpenItem

1.107 FindTreeItem function

Function prototype:

TreeItem *FindTreeItem(TreeControl *tc, char *text);

Description:

Finds a tree item which has the text specified.

Parameters:

tc: A pointer to the tree control.
text: The text to search for.

Returns:

If successful, a pointer to the relevant tree item is returned.
Otherwise NULL.

Known bugs:

None.

See also:

AddItem

TCItemText

1.108 ItemData function

foxgui 109 / 203

Function prototype:

void *ItemData(TreeItem *ti);

Description:

Returns the item data associated with the tree item. This will be the
pointer which was passed as the ItemData parameter to the AddItem
function.

Parameters:

ti: A pointer to the tree item.

Returns:

A pointer to the item data or NULL if none was supplied.

Known bugs:

None.

See also:

AddItem

TCHiItem

1.109 ItemIsOpen function

Function prototype:

BOOL ItemIsOpen(TreeItem *it);

Description:

Returns TRUE if the children of this item are theoretically visible.
I.e. if this item has a parent then the parent must also be open and if
that item has a parent then it must also be open etc. If the item has
no children but it’s parent (if it has one) is open and so is it’s
parent etc all the way to the top of the tree then this function will
return the value of IsOpen that was passed to the AddItem function when
this item was created.

Parameters:

ti: A pointer to the item.

Returns:

TRUE or FALSE (see above).

foxgui 110 / 203

Known bugs:

None.

See also:

AddItem

CloseItem

OpenItem

1.110 MakeTreeControl function

Function prototype:

TreeControl *MakeTreeControl(void *Parent, int left, int top, int width, int ←↩
height,
int lborder, int tborder, int flags, int (*Eventfn) (TreeControl*,
short, TreeItem*, void**), void *extension);

Description:

Make a new FoxGUI tree control.

Parameters:

Parent: A pointer to an open FoxGUI window or frame in which to
create the new tree control.

left: The x coordinate of the left edge of the tree control
relative to the left edge of the window/frame.

top: The y coordinate of the top edge of the tree control relative
to the top edge of the window/frame.

width: The width of the tree control in pixels. Note that this
includes the width of the scroll gadget on the right hand edge
when there is one.

height: The height of the tree control in pixels.
lborder: Left border - the distance in pixels between the left border

of the tree control and the left edge of the text for the
items within it. 2 or 3 pixels is usually sufficient to make
it look neat.

tborder: Top border - the distance in pixels between the top border of
the tree control and the top edge of the text for the first
item in the list box. 1 or 2 pixels is usually sufficient to
make it look neat.

flags: The following flags are currently available for tree controls:
TC_SELECT, TC_CURSOR, TC_DBLCLICK, TC_DRAG, TC_DROP,
TC_OPENITEM, TC_CLOSEITEM,

S_AUTO_SIZE
and

TC_REHILIGHT_ON_SCROLL.

The TC_SELECT flag should be specified if you want a function

foxgui 111 / 203

of your own to be called whenever a user clicks on an item in
the tree control. The TC_CURSOR flag should be specified if
you want your function to be called when the user changes the
currently hilighted item without clicking on an item (i.e. by
using the cursor keys or dragging a scroll bar). In the case
of dragging a scroll bar, if a new item is hilighted, your
function will be called once when the user releases the scroll
bar. The TC_DRAG flag should be specified if you want the
user to be able to drag data out of this tree control into
other drag/drop aware controls. If you wish to supply your
own mouse pointer for use during drag/drop actions then
see

SetTreeControlDragPointer
. If you want to be able to drop

data dragged from other drag/drop aware controls into this
tree control then specify the TC_DROP flag. If you want to
specify an action to occur when a user double clicks on an
item in the tree control then specify the TC_DBLCLICK flag.
If you want to know when a user clicks on an open or close
(+/-) button on an item in the tree control then use
TC_OPENITEM and TC_CLOSEITEM. These two flags will cause your
event function to be called when the user clicks on a +/-
button, before FoxGUI has opened the item. The
TC_REHILIGHT_ON_SCROLL flag ensures that the hilighted item in
a tree control is always within the visible part of the list
so that if scrolling the list would cause the hilighted item
to be outside the visible portion of the list then a new item
will be hilighted instead. If you specify any of these flags
(other than TC_REHILIGHT_ON_SCROLL) then you will need to
specify and EventFn (see below).

Eventfn: A pointer to a function to handle all tree control events.
This parameter should be specified if any of the following
flags have been specified: TC_SELECT, TC_CURSOR, TC_DBLCLICK,
TC_DRAG, TC_DROP, TC_OPENITEM or TC_CLOSEITEM. The function
should have the following prototype:

int CALLBACK Eventfn(TreeControl *tc, short Event,
TreeItem *HiItem, void **data);

and will be called whenever one of those events occurs and will
be passed a pointer to the tree control (so that your function
can be used to handle events for more than one tree control).
The Event parameter will be one of TC_SELECT, TC_CURSOR,
TC_DBLCLICK, TC_DRAG, TC_DROP, TC_OPENITEM or TC_CLOSEITEM
depending on which event occured and HiItem will contain a
pointer to the item that was selected, double clicked on,
opened, closed or dragged out of the box or, in the case of the
TC_DROP event, a pointer to the item above which the cursor was
positioned when the user let go of the mouse button. In the
case of the TC_DROP event, HiItem will be NULL if the drop
occurred in an area where there was no item. If data has been
dragged from another drag/drop aware control and dropped in
this one then *data will be a pointer to the data that was
dragged which would have been set in the event function for the
originating control. If data is being dragged from this
control into another drag/drop aware control (the TC_DRAG
event) then you can set *data to point to anything you want

foxgui 112 / 203

and if the drop event occurs above another drag/drop aware
control, that pointer will be passed to the event function of
that control.
As with almost all user-defined functions called directly by
FoxGUI, this function should return either

GUI_CONTINUE
or

GUI_END
but you should see the notes in the

Drag/Drop functionality
section about return values from

drag event functions.
extension: This is reserved for future expansion and should be set to

NULL.

Returns:

If successful, a pointer to a new FoxGUI tree control. NULL otherwise.

Known bugs:

None.

See also:

Drag/Drop functionality

AddItem

RemoveItem

TCHiItem

TCHiText

SetTreeControlDragPointer

SetTreeControlHiItem

Destroy

Hide

Show

DisableControl

EnableControl

1.111 SetTreeControlDragPointer function

foxgui 113 / 203

Function prototype:

void SetTreeControlDragPointer(TreeControl *tc, unsigned short

*DragPointer, int width, int height, int xoffset, int yoffset);

Description:

Specify a custom mouse-pointer to be shown when dragging data out of a
drag/drop enabled tree control.

Parameters:

tc: A pointer to the tree control.
DragPointer: A pointer to an array of numbers making up a standard

Intuition sprite data structure. This must be stored in
chip memory since it is to be used as a mouse pointer.

width: The width in pixels of the pointer provided. The maximum
width of an Amiga mouse pointer is 16 pixels.

height: The height in pixels of the pointer provided. There is no
maximum height.

int XOffset:
int YOffset: These two numbers specify the offset of the pointers

hot-spot from the top left corner of the sprite. They are
typically zero or negative.

Known bugs:

None.

See also:

Drag/Drop functionality

MakeTreeControl

1.112 OpenItem function

Function prototype:

void OpenItem(TreeItem *it);

Description:

Open a closed tree control item, show it’s children. This function
has exactly the same effect as the user clicking on the +/- button of
an closed tree control item.

Parameters:

ti: A pointer to the item to open.

Known bugs:

foxgui 114 / 203

None.

See also:

CloseItem

1.113 RemoveItem function

Function prototype:

void RemoveItem(TreeItem *ti);

Description:

Remove the specified item from the tree control.

Parameters:

ti: The item to remove.

Known bugs:

None.

See also:

AddItem

1.114 ReplaceTCItem function

Function prototype:

TreeItem *ReplaceTCItem(TreeItem *old, char *text, GuiBitMap *bm, void * ←↩
ItemData);

Description:

Replaces an item from a tree control with a new item described by the
text, bm and ItemData parameters.

Parameters:

old: A pointer to the tree item to replace.

All of the other parameters are equivalent to the ones for the
AddItem

function.

foxgui 115 / 203

Returns:

A pointer to the new item or NULL if not successful. Note that after
calling this function the pointer to the old item is no longer valid and
should not be used.

From version 4.7 onwards, it is safe to pass the return value from

TCItemText
for this item as the text parameter of this function. This

allows you to easily change the image of an item without changing the
text. For example:
newitem = ReplaceTCItem(olditem, TCItemText(olditem), newbitmap, NULL);

Known bugs:

None.

See also:

AddItem

FindTreeItem

RemoveItem

1.115 SetTreeControlHiItem function

Function prototype:

void SetTreeControlHiItem(TreeControl *tc, TreeItem *HiItem, BOOL refresh);

Description:

Change or set the currently hilighted item of a tree control.

Parameters:

tc: A pointer to the tree control.
HiItem: A pointer to the tree item to hilight.

refresh: If TRUE, refresh the tree control to show the newly hilighted
item, otherwise it will be shown next time the tree control is
refreshed.

Known bugs:

None.

See also:

TCHiItem

foxgui 116 / 203

TCHiText

1.116 TCHiItem function

Function prototype:

TreeItem *TCHiItem(TreeControl *tc);

Description:

Return a pointer to the currently hilighted item of a tree control.

Parameters:

tc: A pointer to the tree control.

Returns:

A pointer to the hilighted item or NULL if no item is hilighted.

Known bugs:

None.

See also:

SetTreeControlHiItem

TCHiText

1.117 TCHiText function

Function prototype:

char *TCHiText(TreeControl *tc);

Description:

Return the text of the currently hilighted item in a given tree control.
Note that:

char *hitext = TCHiText(MyTreeControl);
is exactly equivalent to:

char *hitext = TCItemText(TCHiItem(MyTreeControl));

Parameters:

tc: A tree control.

Returns:

foxgui 117 / 203

A pointer to the text string of the currently hilighted item or NULL if
no item is hilighted.

Known bugs:

None.

See also:

SetTreeControlHiItem

TCHiItem

TCItemText

1.118 TCItemText function

Function prototype:

char *TCItemText(TreeItem *ti);

Description:

Return the text of a specified tree item.

Parameters:

ti: The tree item.

Returns:

A pointer to the text string of the tree control item.

Known bugs:

None.

See also:

TCHiItem

TCHiText

1.119 FoxGUI Listbox functions

List boxes consist of a frame around a list of items. When a user ←↩
clicks

foxgui 118 / 203

on an item in the list it becomes hilighted and (optionally) a function can
be triggered. A function can also be triggered by a double-click if
required. If there are more items in a list than can be shown in the
frame, then the list box will automatically get a scroll bar (proportional
gadget) on it’s right hand edge which can be used to scroll up and down the
list of items. If an item is added to the list box which is wider than the
box itself, the list box will get a horizontal scroll bar (proportional
gadget) on the bottom edge.

Functions are supplied to sort the items in a list box (into numerical or
alphabetical, ascending or descending order) and it is possible to have a
list box arranged in columns by setting tab-stops.

List boxes are drag-drop aware. Items can be dragged into or out of list
boxes (see

Drag/Drop functionality
).

The following listbox functions are currently available :-

AddListBoxItem

AddListBoxTitle

ClearListBoxItems

ClearListBoxTabStops

ClearListBoxTitles

FindListText

HiElem

HiNum

HiText

InsertListBoxItem

ListBoxRefresh

ListColumnText

MakeListBox

NoLines

NoTitles

ReplaceListBoxItem

SetListBoxHiElem

SetListBoxHiNum

foxgui 119 / 203

SetListBoxTabStopsArray

SetListBoxTopNum

SortListBox

TopNum
See also:

Destroy

DisableControl

EnableControl

1.120 AddListBoxItem function

Function prototype:

ListBoxItem *AddListBoxItem(ListBox *nlb, char *item, BOOL
refresh);

Description:

Adds a line of text to an existing FoxGUI listbox. The item is added to
the end of the list but the list can be sorted if you require it once
all of the required items have been added. The items in a list box can
contain tabs to align data in columns. Items in a list box are
sometimes referred to in this manual as "elements".

Parameters:

nlb: The FoxGUI list box to which to add the item.
item: The text string to add to the list box. If the text string

contains tab characters (specified as ’\t’ in C) then each tab
will cause the character following it to be printed at the next
tab stop as specified when calling the function

SetListBoxTabStopsArray
. For a full example of using tabbed lists

see the
SetListBoxTabStopsArray
function (which should be called

before any elements are added). If you add more items than can
fit within the list box then a scroll bar is automatically
created at the right hand edge of the list box.

refresh: If TRUE then the list box will be refreshed after this item has
been added so that you see the item immediately (or you see the
scrollbar resize if the item is outside the currently visible
portion of the list box). If you are adding many items to a
list box at once then it is quicker to add them all without
refreshing and then do one refresh at the end - either by
setting refresh to TRUE for the very last item added or by

foxgui 120 / 203

calling the function
ListBoxRefresh
after adding the last

item.

Returns:

If successful, a pointer to the item which has been added, otherwise
NULL. There is no good reason for maintaining a pointer to each item
that you add because the listbox will do that for you but it may be
important for your application to check this function for a non-NULL
result just to check that it has succeeded.

Known bugs:

None.

See also:

AddListBoxTitle

ClearListBoxItems

HiElem

HiNum

HiText

InsertListBoxItem

ListBoxRefresh

MakeListBox

NoLines

SetListBoxHiNum

SetListBoxTabStopsArray

SetListBoxTopNum

SortListBox

TopNum

1.121 AddListBoxTitle function

Function prototype:

BOOL AddListBoxTitle(ListBox *nlb, char *title, BOOL refresh);

foxgui 121 / 203

Description:

Adds a title line to the specified list box. Unlike the items added to
a list box, title lines cannot be sorted (they are always shown at the
top of the list in the order that they were added) and are not scrolled
by the scroll-bar (if present) on the right hand edge of the list box.
When a list box is created, the Gui will calculate the maximum number of
lines of text that can be shown in the list at a time (which will depend
on the height of the list and the font size specified for the text) and
will not allow the titles to fill the visible list space. In other
words the Gui always allows room for at least one item to be shown in
the list at a time. Any attempt to add a title to the last visible line
of a list box will fail. In practice, title lines are usually far
outnumbered by visible items if they are present at all. It is not
necessary to have any titles on a list box if you prefer. As with list
box items, if the list box has tab stops and the title specified has tab
characters in it then the character immediately following each tab
character will appear at the next tab stop set. In this way it is
possible to have columns of text or data aligned with titles at the top.

Parameters:

nlb: A pointer to the FoxGUI list box to which to add the title.
title: The text string to add as a title to the specified list box.

refresh: If TRUE then the list box will be refreshed after adding the
title so that you see it immediately. If you want to add more
than one title or a combination of titles and items at the
same time then it is quicker not to refresh the list box after
each but to wait until after adding the last one and then
refresh the list box either by setting refresh to TRUE for the
last title/item added or by calling

ListBoxRefresh
after

adding it.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

AddListBoxItem

ClearListBoxTitles

ListBoxRefresh

MakeListBox

NoTitles

SetListBoxTabStopsArray

foxgui 122 / 203

1.122 ClearListBoxItems function

Function prototype:

void ClearListBoxItems(ListBox *lb, BOOL refresh);

Description:

Removes all items from a FoxGUI list box and frees all associated
resources. This function does not clear the list boxes titles if any
have been set.

Parameters:

lb: A pointer to the list box whose items are to be removed.
refresh: If TRUE then the list box will be refreshed so that the user

will see an empty list box. If you are emptying it to refill
it again with different data then you may prefer to set refresh
to FALSE and then refresh the list box after adding the new
data.

Known bugs:

None.

See also:

AddListBoxItem

ClearListBoxTabStops

ClearListBoxTitles

ListBoxRefresh

MakeListBox

NoLines

NoTitles

1.123 ClearListBoxTabStops function

Function prototype:

void ClearListBoxTabStops(ListBox *nlb, BOOL refresh);

Description:

foxgui 123 / 203

Clears any tab stops previously set for a list box.

Parameters:

nlb: A pointer to the list box whose tab stops are to be cleared.
refresh: If TRUE the list box will be redrawn. The text for items in a

list box is formatted at the time that the items are added to
the list box - to do this every time the list box redraws is
too slow. As a result, clearing the tab stops and refreshing
the list will cause the existing items and titles in the list
to be displayed exactly as though the tab stops still existed.
Only titles and items added to the list box after calling this
function will be affected. It is therefore unlikely that you
will need to set refresh to TRUE when clearing the tab stops
unless you have also made other changes to the list box which
you haven’t yet refreshed.

Known bugs:

None.

See also:

AddListBoxItem

AddListBoxTitle

ClearListBoxItems

ClearListBoxTitles

ListBoxRefresh

MakeListBox

SetListBoxTabStopsArray

1.124 ClearListBoxTitles function

Function prototype:

void ClearListBoxTitles(ListBox *lb, BOOL refresh);

Description:

Removes all titles from a FoxGUI list box and frees all associated
resources. This function does not clear any items from the list box.

Parameters:

lb: A pointer to the list box whose titles are to be removed.
refresh: If TRUE then the list box will be refreshed so that the user

foxgui 124 / 203

will see the list box without it’s titles immediately. If you
are removing them to replace them with alternative titles then
you may prefer to set refresh to FALSE and then refresh the
list box after adding the new titles.

Known bugs:

None.

See also:

AddListBoxTitle

ClearListBoxItems

ClearListBoxTabStops

ListBoxRefresh

MakeListBox

NoTitles

1.125 FindListText function

Function prototype:

int FindListText(ListBox *lb, char *text, int reqcolumn);

Description:

Find the item number of the list box item which matches the specified
text string.

Parameters:

lb: A pointer to the list box.
text: A pointer to the text item to be found. If the list box is

in columns, a match will be found if the text matches the
entire contents of a column. If the list is not in columns
then a match will be found if the text matches the entire
text for a line of the list box.

reqcolumn: If you want to find text in a specific column of a list box
with tabs then set this to the column number required. If a
match is found in a column other than the one specified then
it won’t be returned. If you want to find text in any
column, set this parameter to 0. The left most column is
column number 1.

Returns:

The item number of the list box item which matches the specified text.
List box item numbers start at 1. If the item is not found, 0 is

foxgui 125 / 203

returned.

Known bugs:

None.

See also:

ListColumnText

1.126 HiElem function

Function prototype:

ListBoxItem *HiElem(ListBox *lb);

Description:

This function returns a pointer to the currently hilighted item in the
specified FoxGUI list box. If there is no hilighted item or the
function fails for any other reason then NULL is returned. This
function is unlikely to be useful for your FoxGUI applications. The
functions

HiNum
and
HiText
are likely to be more useful.

Parameters:

lb: A pointer to a FoxGUI list box.

Returns:

A pointer to the currently hilighted element. Note that if the list box
has tab stops set and the hilighted element contains tabs then the line
of the list box will consist of more than one element and the pointer
returned is the pointer to the first of these.

Known bugs:

None.

See also:

AddListBoxItem

ClearListBoxItems

ClearListBoxTabStops

HiNum

foxgui 126 / 203

HiText

MakeListBox

SetListBoxHiNum

SetListBoxTabStopsArray

TopNum

1.127 HiNum function

Function prototype:

int HiNum(ListBox *lb);

Description:

Returns the number of the currently hilighted item in a FoxGUI list box.
If there is no currently hilighted item or if any other error occurs, 0
is returned (list box items are numbered starting at 1 not 0).

Parameters:

lb: A pointer to a FoxGUI list box.

Returns:

The number of the hilighted item.

Known bugs:

None.

See also:

AddListBoxItem

ClearListBoxItems

HiElem

HiText

MakeListBox

NoLines

NoTitles

SetListBoxHiNum

foxgui 127 / 203

SetListBoxTopNum

TopNum

1.128 HiText function

Function prototype:

char *HiText(ListBox *lb);

Description:

Returns a pointer to a text string containing the text of the currently
hilighted item in the list box.

Parameters:

lb: A pointer to a FoxGUI list box.

Returns:

The text of the hilighted item in the list box. Note that this is a
pointer to the text actually used by the list box itself so if you want
to compare this or output it directly in some way then that’s fine but
if you need to modify it at all then you should take a copy using
strcpy() or similar. Note also that if the list box has tab stops and
the hilighted entry contains tabs then the text returned is only the
text for the first column (i.e. up to the first tab stop). You can
retrieve the text in other columns using the function

ListColumnText
.

Known bugs:

None.

See also:

HiElem

HiNum

ListColumnText

MakeListBox

SetListBoxHiNum

foxgui 128 / 203

1.129 InsertListBoxItem function

Function prototype:

ListBoxItem *InsertListBoxItem(ListBox *nlb, char *item, ListBoxItem *after, ←↩
BOOL refresh);

Description:

Inserts an item into a listbox, at a point specified by passing a
pointer to the previous item.

Parameters:

nlb: The listbox in which to insert the new item.
item: The text of the new item.

after: A pointer to the item after which to insert the new item. If
this parameter is NULL then the new item will be inserted at
the beginning of the list.

refresh: If TRUE, will refresh the listbox to show the new item.

Returns:

If successful, a pointer to the new item. NULL otherwise.

Known bugs:

None.

See also:

AddListBoxItem

ListBoxRefresh

ReplaceListBoxItem

1.130 ListBoxRefresh function

Function prototype:

void ListBoxRefresh(ListBox *lb);

Description:

Refreshes a list box. Most list box functions that change a list box in
any way take a boolean parameter that specifies whether or not to
refresh the list box afterwards. This is so that you can make multiple
changes (e.g. add loads of items) without refreshing and then just
refresh once at the end (which is faster than doing a refresh for each
change).

foxgui 129 / 203

Parameters:

lb: A pointer to the FoxGUI list box to refresh.

Known bugs:

None.

See also:

AddListBoxItem

AddListBoxTitle

ClearListBoxItems

ClearListBoxTabStops

ClearListBoxTitles

MakeListBox

SetListBoxHiNum

SetListBoxTabStopsArray

SetListBoxTopNum

SortListBox

1.131 ListColumnText function

Function prototype:

char *ListColumnText(ListBox *lb, int col);

Description:

Returns the text of the specified column of the hilighted item in the
specified list box.

Parameters:

lb: A pointer to the list box.
col: The column number of the column whose text is to be returned. The

left most column is column number 0.

Returns:

A pointer to the text of the specified column of the hilighted item.
This is a pointer to the actual text used by the list box so if you
intend to modify it you should make a copy of it first and modify the
copy.

foxgui 130 / 203

Known bugs:

None.

See also:

FindListText

HiText

SetListBoxHiElem

SetListBoxHiNum

SetListBoxTabStopsArray

1.132 MakeListBox function

Function prototype:

ListBox *MakeListBox(void *Parent, int left, int top, int width, int height, ←↩
int lborder,
int tborder, int flags, int (*Eventfn) (ListBox*, short, int, void**),
void *extension);

Description:

Make a new FoxGUI list box.

Parameters:

Parent: A pointer to an open FoxGUI window or frame in which to
create the new list box.

left: The x coordinate of the left edge of the list box relative to
the left edge of the window/frame.

top: The y coordinate of the top edge of the list box relative to
the top edge of the window/frame.

width: The width of the list box in pixels. Note that this includes
the width of the scroll gadget on the right hand edge when
there is one.

height: The height of the list box in pixels.
lborder: Left border - the distance in pixels between the left border

of the list box and the left edge of the text for the titles
and items within it. 2 or 3 pixels is usually sufficient to
make it look neat.

tborder: Top border - the distance in pixels between the top border of
the list box and the top edge of the text for the first
title/item in the list box. 1 or 2 pixels is usually
sufficient to make it look neat.

flags: The following flags are currently available for list boxes:
LB_SELECT, LB_CURSOR, LB_DBLCLICK, LB_DRAG, LB_DROP,
LB_REHILIGHT_ON_SCROLL and

foxgui 131 / 203

S_AUTO_SIZE
.

The LB_SELECT flag should be specified if you want a function
of your own to be called whenever a user clicks on an item in
the list box. The LB_CURSOR flag should be specified if you
want your function to be called when the user changes the
currently hilighted item without clicking on an item (i.e. by
using the cursor keys or dragging a scroll bar). In the case
of dragging a scroll bar, if a new item is hilighted, your
function will be called once when the user releases the scroll
bar. The LB_DRAG flag should be specified if you want the
user to be able to drag data out of this list box into other
drag/drop aware controls. If you wish to supply your own
mouse pointer for use during drag/drop actions then call the
function

SetListBoxDragPointer
. If you want to be able to drop data

dragged from other drag/drop aware controls into this list box
then specify the LB_DROP flag. If you want to specify an
action to occur when a user double clicks on an item in the
list box then specify the LB_DBLCLICK flag. The
LB_REHILIGHT_ON_SCROLL flag ensures that the hilighted item in
a list box is always within the visible part of the list
so that if scrolling the list would cause the hilighted item
to be outside the visible portion of the list then a new item
will be hilighted instead.

Eventfn: A pointer to a function to handle all list box events. This
parameter should be specified if any of the following flags
have been specified: LB_SELECT, LB_CURSOR, LB_DBLCLICK,
LB_DRAG or LB_DROP. The function will be called whenever one
of those events occurs and will be passed a pointer to the list
box (so that your function can be used to handle events for
more than one list box). The function should have the
following prototype:

int CALLBACK EventFn(ListBox *lb, short Event, int
ItemNum, void **data);

The Event parameter will be one of LB_SELECT, LB_CURSOR,
LB_DBLCLICK, LB_DRAG or LB_DROP depending on which event
occured and ItemNum will contain the item number of the item
that was selected, double clicked on or dragged out of the box
or, in the case of the LB_DROP event, the item number of the
item above which the cursor was positioned when the user let
go of the mouse button. In the case of the LB_DROP event,
ItemNum will be zero if the drop occurred in an area where
there was no item (for example if the drop occurred over one
of the list boxes titles). If data has been dragged from
another drag/drop aware control and dropped in this one then

*data will be a pointer to the data that was dragged which
would have been set in the event function for the originating
control. If data is being dragged from this control into
another drag/drop aware control (the LB_DRAG event) then you
can set *data to point to anything you want and if the drop
event occurs above another drag/drop aware control, that
pointer will be passed to the event function of that control.
As with almost all user-defined functions called directly by

foxgui 132 / 203

FoxGUI, this function should return either
GUI_CONTINUE

or
GUI_END
but you should see the notes in the

Drag/Drop functionality
section about return values from drag

event functions.
extension: This is reserved for future expansion and should be set to

NULL.

Returns:

If successful, a pointer to a new FoxGUI list box. NULL otherwise.

Notes:

Prior to release 5.0, it was possible to pass extra parameters to define
a mouse pointer which would be shown when dragging data out of the list
box. This can now be achieved by calling the function

SetListBoxDragPointer
.

Known bugs:

None.

See also:

Drag/Drop functionality

AddListBoxItem

AddListBoxTitle

ClearListBoxItems

ClearListBoxTabStops

ClearListBoxTitles

Destroy

DisableControl

EnableControl

HiElem

HiNum

HiText

ListBoxRefresh

foxgui 133 / 203

NoLines

NoTitles

SetListBoxDragPointer

SetListBoxHiNum

SetListBoxTabStopsArray

SetListBoxTopNum

SortListBox

TopNum

1.133 SetListBoxDragPointer function

Function prototype:

void SetListBoxDragPointer(ListBox *lb, unsigned short *DragPointer,
int width, int height, int xoffset, int yoffset);

Description:

Sets the mouse-pointer to be shown when dragging data out of the
specified list box if it is drag/drop enabled.

Parameters:

lb: A pointer to a FoxGUI list box.
DragPointer: A pointer to an array of numbers making up a standard

Intuition sprite data structure. This must be stored in
chip memory since it is to be used as a mouse pointer.

width: The width in pixels of the pointer provided. The maximum
width of an Amiga mouse pointer is 16 pixels.

height: The height in pixels of the pointer provided. There is no
maximum height.

xoffset:
yoffset: These two numbers specify the offset of the pointers

hot-spot from the top left corner of the sprite. They are
typically zero or negative.

Known bugs:

None.

See also:

MakeListBox

foxgui 134 / 203

1.134 NoLines function

Function prototype:

int NoLines(ListBox *lb);

Description:

Uses the list boxes height, top border, font size and number of titles
to calculate the number of items that can be shown in the visible area
of a list box. (Obviously this does not determine the maximum number of
items that can be added to a list box because the visible portion of a
list box can be scrolled).

Parameters:

lb: A pointer to a FoxGUI list box.

Returns:

The number of items that can be displayed in the list box.

Known bugs:

None.

See also:

MakeListBox

NoTitles

1.135 NoTitles function

Function prototype:

int NoTitles(ListBox *lb);

Description:

Returns the number of titles currently displayed in the specified list
box.

Parameters:

lb: A pointer to a FoxGUI list box.

Returns:

The number of titles currently displayed in the specified list box.

Known bugs:

foxgui 135 / 203

None.

See also:

AddListBoxTitle

ClearListBoxTitles

MakeListBox

NoLines

1.136 ReplaceListBoxItem function

Function prototype:

ListBoxItem *ReplaceListBoxItem(ListBox *nlb, char *item, ListBoxItem

*OldItem, BOOL refresh);

Description:

Replaces a list box item. The specified item is replaced by the new
item text specified.

Parameters:

nlb: A pointer to the list box.
item: A pointer to the text of the new item.

OldItem: A pointer to the item to replace.
refresh: TRUE if you want the list box to be redrawn to show the

replacement item, FALSE otherwise.

Returns:

A pointer to the new list box item. Once an item has been replaced,
the pointer to it becomes meaningless and should not be used. The
pointer returned by this function should be used in it’s place.

Known bugs:

None.

See also:

AddListBoxItem

ClearListBoxItems

InsertListBoxItem

FindListText

foxgui 136 / 203

HiElem

ListBoxRefresh

1.137 SetListBoxHiElem function

Function prototype:

void SetListBoxHiElem(ListBox *lb, ListBoxItem *item, BOOL refresh);

Description:

Sets the hilighted item of the list box to the element specified.

Parameters:

lb: A pointer to the list box.
item: A pointer to the element to be hilighted.

refresh: TRUE if you want the list box to be redrawn to show the new
hilighted element, FALSE otherwise.

Known bugs:

None.

See also:

AddListBoxItem

HiElem

HiNum

HiText

ListBoxRefresh

SetListBoxHiNum

SetListBoxTopNum

1.138 SetListBoxHiNum function

Function prototype:

void SetListBoxHiNum(ListBox *lb, int num, BOOL refresh);

Description:

foxgui 137 / 203

Hilight the specified item number in the specified list box. This
function will fail if you specify a number greater than the number of
items in the list box. Note that if the item number specified is not
currently in the visible portion of the list box, the list box will not
be automatically scrolled to show the hilighted item. You can do this
yourself using the function

SetListBoxTopNum
.

You can use a combination of other list box functions to work out
whether or not your target item number is currently in the visible
portion of the list box as follows :-

if (itemnum >= TopNum(lb) && itemnum <= NoLines(lb) + TopNum(lb) - 1)
{

// itemnum is in the visible portion of list box lb.
}

List box items start at 1. If you pass num as 0, the hilighted item (if
any) will be unhilighted but no new item will be hilighted.

Parameters:

lb: A pointer to a FoxGUI list box.
num: The item number of the item to hilight.

refresh: If TRUE, refresh the list box to unhilight the previously
selected item and hilight the selected item. Otherwise, leave
the list box looking as it was. Typically you would set this
to FALSE if you had many other changes to make to the list box
- it’s quicker to make all of the changes without refreshing
and then refresh the list box just once at the end.

Known bugs:

None.

See also:

AddListBoxItem

HiElem

HiNum

HiText

ListBoxRefresh

MakeListBox

NoLines

NoTitles

SetListBoxHiElem

foxgui 138 / 203

SetListBoxTopNum

TopNum

1.139 SetListBoxTabStopsArray function

Function prototype:

BOOL SetListBoxTabStopsArray(ListBox *nlb, BOOL refresh, short num, int *tabs);

Description:

Set the tab stops in a list box so that data can be displayed in
columns. If you want a tabbed list box, you should always set your tab
stops before adding any titles or items to the list. Calling
SetListBoxTabStopsArray after items have been added to the list won’t
affect items that were added prior to the SetListBoxTabStopsArray call,
only those that are added subsequently.

Parameters:

nlb: A pointer to a FoxGUI list box.
refresh: If TRUE, refresh the list box after setting the tab stops.

Since SetListBoxTabStopsArray doesn’t currently afffect items
and titles that have already been added, there’s currently no
real reason to set this to TRUE.

num: The number of tab stops to set. Note that no tab stop is
necessary for the first column which will always be at the left
border of the list box. In other words, if you want to have
text in 3 columns, you only need to set 2 tab stops - for the
second and third columns.

tabs: An array of tab stops. Each should be the offset for that tab
stop in pixels from the left border.

For example, if you have a list box lb in which you want to show
three columns of text entitled "Stock no.", "Description" and
"In stock", you might set your tab stops and titles as follows:

/* Our list box uses an 8 point fixed width font so to allow
room for a 9 digit stock no. preeceded by a two character
width gap between columns, we’ll put the first tab stop at
11*8 and then to allow room for a 17 character description
with the same gap between columns we’ll put the second tab
stop at 30*8. */

int tabs[2];
tabs[0] = 11*8; tabs[1] = 30*8;
SetListBoxTabStopsArray(lb, FALSE, 2, tabs);
AddListBoxTitle(lb, "Stock no.\tDescription\tIn stock");

Returns:

TRUE for success, FALSE for failure.

foxgui 139 / 203

Known bugs:

None.

See also:

AddListBoxItem

AddListBoxTitle

ClearListBoxItems

ClearListBoxTabStops

ClearListBoxTitles

ListBoxRefresh

MakeListBox

1.140 SetListBoxTopNum function

Function prototype:

void SetListBoxTopNum(ListBox *lb, int num, BOOL refresh);

Description:

Sets the top item number shown in a list box. The user of your
application can do this themselves using the scroll bar or buttons on
the right hand edge of the list box but this function allows you to set
it from within your application code if you require. If a user scrolls
the list using the scroll bar or buttons, the Gui will always attempt to
keep the list box full e.g. if the list box has 20 lines and 100 elements
(the list box can show 20 elements at a time) the user won’t be allowed to
scroll down below the point where the top element shown is item number
81 (81 to 100 inclusive is 20 items). This function provides no such
checking for you and would quite happily set the top item number to 101!
However, it is advised that you try to keep to the look and feel of the
Gui by not doing so and you can use the function

NoLines
to

help you work out the highest number that you should specify for the top
number in the list box. You will have to keep a count of the number of
items in the list box yourself.

Parameters:

lb: A pointer to a FoxGUI list box.
num: The item number to set as the top item in the list box.

refresh: If TRUE, refresh the list box to show the list starting with
the new top item. Set this to FALSE if you have many other
changes to make to the list box - that way, instead of

foxgui 140 / 203

refreshing after each change you can refresh just once at the
end.

Known bugs:

None.

See also:

ListBoxRefresh

MakeListBox

NoLines

NoTitles

SetListBoxHiNum

TopNum

1.141 SortListBox function

Function prototype:

void SortListBox(ListBox *p, int flags, int startnum, BOOL refresh);

Description:

Sorts the items in a list box (numerically or alphabetically) into
ascending or descending order.

Parameters:

p: A pointer to a list box to sort.
flags: This should be one of ASCENDING or DESCENDING (to sort

alphabetically), NUM_ASCENDING or NUM_DESCENDING to sort
numerically. If none of these are specified then DESCENDING
is assumed. When sorting numerically, the function attempts
to turn the text for each item into a number and sorts using
those numbers - any items which can’t be turned into numbers
are treated as if they contained the number zero.

startnum: The item number to start sorting at. To sort the whole list,
set this to 1. Setting this to any number (n) greater than 1
will cause the first n-1 items to remain exactly where they
are and the items from n onwards to be sorted.

refresh: If TRUE, refresh the list to show the items in their new
order. Set this to FALSE if you want to make other changes
before refreshing the list (it’s faster to do all of your
changes and then refresh once than to refresh after each
change).

Known bugs:

foxgui 141 / 203

None.

See also:

AddListBoxItem

ClearListBoxItems

ListBoxRefresh

MakeListBox

1.142 TopNum function

Function prototype:

int TopNum(ListBox *lb);

Description:

Returns the item number of the first item currently displayed in the
visible portion of a list box.

Parameters:

lb: A pointer to a FoxGUI list box.

Returns:

The number of the item cureently at the top of the visible portion of
the list box.

Known bugs:

None.

See also:

HiElem

HiNum

HiText

MakeListBox

NoLines

NoTitles

foxgui 142 / 203

1.143 FoxGUI Drop-Down Listbox functions

Drop-down list boxes are likely to be less familier to Amiga users ←↩
than

many of the other controls in FoxGUI. Most Amiga applications don’t use
them but if you have used MUI applications or Windows applications on a PC
then you will recognise them instantly. Drop-down list boxes are like a
cross between edit boxes and list boxes. When you see a drop-down list box
in an application window, what you will see is an edit box with a button
attached to it’s right hand end. You cannot edit the contents of the edit
box directly but if you click on the button, a list of options (which looks
exactly like a list box) appears below the edit box. The list can be
scrolled (if it contains more items than can be shown at once) exactly as a
list box can but clicking on an item causes that item to be copied into the
edit box and the list to disappear. In this way a user can choose from a
set of options decided by the programmer. On Amigas running OS 2.0 or
greater, the user can tab (and shift tab) to drop-down list boxes exactly
as with edit boxes. When the user has selected the drop-down list box
(either by tabbing or by clicking in the edit box part with the mouse) the
user can select items in the list by using short-cut keys. For example, if
the list box is selected and the user presses the "t" key, the first item
in the list beginning with the letter t is selected. If no item in the
list begins with the letter t then nothing is selected. If more than one
item begins with a t then pressing t repeatedly will cycle between them.
As with tabbing, short-cut keys are only supported on OS version 2.0 and
above.

The following drop-down listbox functions are currently available :-

AddToDDListBox

AssociateDDListBox

ClearDDListBox

GetDDListBoxID

GetDDListBoxText

MakeDDListBox

MakeSubDDListBox

RemoveFromDDListBox
RestoreDDListBoxStatus

SetDDListBoxPopup

SetDDListBoxText

SortDDListBox
StoreDDListBoxStatus

See also:

foxgui 143 / 203

Destroy

DisableControl

EnableControl

1.144 AddToDDListBox function

Function prototype:

BOOL AddToDDListBox(DDListBox *list, char *str);

Description:

Adds an item (a line of text) to a drop-down list box. The items in a
drop-down list box don’t become visible until the user clicks on the
button at the right hand end of the drop-down list box (on OS V37 or
above this can also be achieved by clicking in or tabbing to the text
part of the drop-down list box and then pressing the space bar).

Parameters:

list: A pointer to a FoxGUI drop-down list box as returned by the

MakeDDListBox
function.

str: A pointer to a NULL terminated text string to add as the next item
in the list. The items in a drop-down list box can be sorted into
order using the function

SortDDListBox
.

Returns:

TRUE if successful, FALSE otherwise.

Known bugs:

None.

See also:

AssociateDDListBox

ClearDDListBox

MakeDDListBox

MakeSubDDListBox

RemoveFromDDListBox

foxgui 144 / 203

SortDDListBox

1.145 AssociateDDListBox function

Function prototype:

BOOL AssociateDDListBox(DDListBox *l, DDListBox *m);

Description:

Describing what this function does would be very tricky without an
example so here comes an example:

Let’s assume that you have twenty items that you want a user to be able
to choose from but you want the user to be able to choose up to five of
those items simultaneously. A list box or a drop-down list box only
allow you to choose one item at a time so you need another solution.
One solution (probably not the most elegant but the one that illustrates
the use of this function) is to create five drop-down list boxes, each
populated with the same list of items so that the user can choose an
item in each. It would be very wasteful to have to populate each
drop-down list box with the same set of items which is where this
function comes in. AssociateDDListBox causes two drop-down list boxes
to become associated with each other. What this means is that they
share a list of items. Adding an item to one will then also cause it to
be added to the other. Removing an item from one will also cause it to
be removed from the other. This is not achieved by automating the
process of adding to the other list box - they physically share the same
list data which means that you save the extra memory that would
otherwise be needed. You can associate as many list boxes together as
you like - there is no limit. However, please read the known bugs
section at the end of this function definition.

Parameters:

l: A pointer to the destination drop-down list box. This list box must
be empty (i.e. have no items in it) for this function to succeed. If
the list box already has items in it, you can clear them using the

ClearDDListBox
function.

m: A pointer to the source drop-down list box. It is recommended that
you fully populate this list box before making the association but it
is only necessary to make sure that it contains one item
before the association is made.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

If your source drop-down list box is empty then all sorts of problems
could occur. AssociateDDListBox will return TRUE but the list boxes

foxgui 145 / 203

won’t quite behave as though they are associated. At some point I will
fix the code to stop this from happening but for the time being it
should be fairly simple just to ensure that you add at least one item to
your source drop-down list before making the association. Clearing a
list box which is associated with others is also a problem - not for the
source box itself but for any drop-down list boxes associated with it.
Please believe that if the solution to this problem were trivial I would
have done it a long time ago but it would be a lot of hard work for
what’s probably going to be a rarely used function so my priorities lie
elsewhere. If you really need this sorting out then hassle me.

See also:

AddToDDListBox

ClearDDListBox

MakeDDListBox

MakeSubDDListBox

RemoveFromDDListBox

1.146 ClearDDListBox function

Function prototype:

void ClearDDListBox(DDListBox *l);

Description:

Removes all of the items from the specified drop-down list box.

Parameters:

l: A pointer to a FoxGUI drop-down list box.

Known bugs:

This function can cause problems with associated drop-down list boxes.
See the

AssociateDDListBox
function for more details.

See also:

AddToDDListBox

AssociateDDListBox

MakeDDListBox

foxgui 146 / 203

MakeSubDDListBox

RemoveFromDDListBox

1.147 MakeDDListBox function

Function prototype:

DDListBox *MakeDDListBox(void *Parent, int x, int y, int len, int buflen,
int MaxHeight, int id, BOOL (*callfn) (DDListBox*),
long flags, void *extension);

Description:

Make a new FoxGUI drop-down list box.

Parameters:

Parent: A pointer to an open FoxGUI window or frame in which to put
the new drop-down list box.

x: The x coordinate in pixels of the left edge of the drop-down
list box relative to the left edge of the window/frame.

y: The y coordinate in pixels of the top edge of the drop-down
list box relative to the top edge of the window/frame.

len: The length in pixels of the text portion of the list box (A
drop-down list box looks like an edit box with a button on
the right hand end which is used to drop the list). The
button is a fixed width (17 pixels) so the total length of
the drop-down list box is len+17.

buflen: The number of characters to reserve for the text buffer -
this limits the length of the string that can be shown in the
text portion of the list box and currently has a maximum
value of 256 which should be more than enough. You do not
need to allow for the NULL terminator - this function will
automatically allocate one more character than you specify to
allow for this so you could just set buflen to the strlen()
of the longest item that you’re going to put in the drop-down
list.

MaxHeight: The maximum number of lines to show at a time when the list
box is dropped. For example, if you set this to 5 and the
list box contains more than 5 items then only five will be
visible in the list when you drop it but the list will have
scroll buttons and a drag-bar to allow you to scroll through
the other items. When you create a list box, it will check
whether there is enough space on the screen below the list
box in which to drop the box with your specified MaxHeight
and if not then it will check to see whether there’s room
above the drop-down list box to "drop" the list upwards. If
there’s not enough room to "drop" the list in either
direction with your specified MaxHeight then MakeDDListBox
will fail. If you are going to make this a "popup" list box
with the function

SetDDListBoxPopup
then you can safely set

foxgui 147 / 203

MaxHeight to 0.
id: This parameter doesn’t affect the way the drop-down list box

looks or works in any way but gets stored as part of the
drop-down list box structure and can be found at any time
using the

GetDDListBoxID
function. This is used in an

entirely analogous way to the id parameter for edit boxes
(see the

MakeEditBox
function for details).

callfn: A pointer to a function to call when the user selects an item
in a drop-down list box. There are a number of ways a user
can do this and hence a number of ways to trigger this
function but whichever method the user uses to pick an item,
the result is always the same and it isn’t important for the
function to know how it was triggered. The prototype for the
function should be as follows:-

short CALLBACK MyDDListBoxFn(DDListBox *lb)

The function will be sent a pointer to the drop-down list box
but no indication of which item was picked. However, you can
find out which item was picked from within the function by
calling the

GetDDListBoxText
function. See the
MakeEditBox

function for an example of how to use the id ←↩
parameter for

dealing with arrays of drop-down list boxes from within the
call-back function. The return value of this call-back
function isn’t currently used by FoxGUI but for future
compatibility you should return GUI_CONTINUE.

flags: Only three flags are currently available for use with
drop-down list boxes:

S_AUTO_SIZE
, THREED and DD_CLEAR.

If the THREED flag is specified then the border around the
list box will be drawn (using the Gui pen colours) in such a
way as to make it look as though it’s pressed into the
screen. If the THREED flag is not specified then the border
will be a simple box around the edge in the current default
border colour. DD_CLEAR specifies that the drop-down list
box will be clear (i.e. see-through). In other words, the
background colour of the drop-down list box will be the
colour of the window or frame in which it was created.

extension: This is reserved for future expansion and should be set to
NULL.

Returns:

If successful, a pointer to a new FoxGUI drop-down list box. NULL
otherwise.

Known bugs:

foxgui 148 / 203

None.

See also:

AddToDDListBox

AssociateDDListBox

ClearDDListBox

Destroy

DisableControl

EnableControl

MakeSubDDListBox

RemoveFromDDListBox

SetDDListBoxPopup

SortDDListBox

GetDDListBoxID

GetDDListBoxText

SetDDListBoxText

MakeEditBox

1.148 MakeSubDDListBox function

Function prototype:

DDListBox *MakeSubDDListBox(DDListBox *lb, char *string, int left, int top, int ←↩
width,

int height, int id, BOOL (*callfn)(DDListBox*), void *extension);

Description:

Rather like menus which can have sub-menus, so drop-down list boxes can
have sub-list boxes. Creating a sub-list box adds an item to a
drop-down list box which, when selected, (rather than populating the text
part of the drop-down list box) pops up another list of options from
which the user must then select an item which will be used to populate
the text part of the drop-down list box. Unlike menus, there is no
limit to the number of levels a drop-down list box can have i.e. a
sub-list box may in turn have items which, when selected open further
sub-list boxes.

Most functions which can be applied to drop-down list boxes can also be

foxgui 149 / 203

applied to sub-list boxes. For example, you add items to a sub-list box
using the

AddToDDListBox
function exactly as you do for drop-down list

boxes. Sub-list boxes can also be associated using the
AssociateDDListBox

function. By their very nature, sub-list boxes are pop-up so ←↩
there is

no need to use the
SetDDListBoxPopup
function unless you want to later

change where the list will pop-up.

Parameters:

lb: A pointer to an existing FoxGUI drop-down list box to which to
add the sub-list box.

string: An item to add to the drop-down list box specified in lb which,
when selected will trigger the sub-list box. It is a good idea
to indicate somehow in the text you supply that this item
triggers a sub-list box. I usually use the "»" character
(created by pressing Alt-0) at the end of the text to indicate
this.

left: Sub-list boxes behave like pop-up list boxes (see

SetDDListBoxPopup
) so they need to be told where to appear on

the screen. Like pop-up list boxes, they aren’t constrained by
the dimensions of the window they are created in but they are
constrained by the dimensions of the screen that window appears
on. This parameter specifies the left edge of the list when it
pops up and is offset from the left edge of the screen (not the
window).

top: The top edge of the list when it pops up, offset from the top
edge of the screen.

width: The width in pixels of the list when it pops up. If you specify
-1 for the width, the Gui will calculate the width necessary for
all items in the list to be shown without being truncated and
will use that width for the list box when it pops up. The
calculation actually takes place when the list box pops up
(not when you call this function) so that items added to or
removed from the list after calling this function are also taken
into account. This does make dropping the list marginally
slower especially if there is a large number of items in the
list but it means that in an application where the user can
choose the font, you don’t have to worry about calculating how
wide you want the box to be - FoxGUI will work it out for you.
Note that if the width is set to -1, the left parameter is
ignored because the Gui will have to calculate where to place
the left edge of the box so that it will fit on the screen.

height: Rather like the MaxHeight parameter to
MakeDDListBox

, this
is the height of the list when it pops up but is specified in
lines of text - not pixels.

If the left, top, width and height parameters are such that the

foxgui 150 / 203

area required will go beyond the boundaries of the screen, the
function will fail.

id: See
MakeDDListBox
or
MakeEditBox
for details.

callfn: A pointer to a function to call when an item is selected from
the new sub-list box. See the callfn parameter to the function

MakeDDListBox
for details.

extension: This is reserved for future expansion and should be set to
NULL.

Returns:

If successful, a pointer to the new sub-list box is returned. If not,
NULL is returned.

Known bugs:

None.

See also:

AddToDDListBox

AssociateDDListBox

ClearDDListBox

Destroy

MakeDDListBox

RemoveFromDDListBox

SortDDListBox

GetDDListBoxID

1.149 RemoveFromDDListBox function

Function prototype:

BOOL RemoveFromDDListBox(DDListBox *list, char *str);

Description:

Remove the specified item from the specified drop-down list box.

foxgui 151 / 203

Parameters:

list: The drop-down list box from which you want to remove an item.
str: The text of the item to remove. This must exactly match the text

given when the item was added to the drop-down list box but
needn’t be the same string. In other words, the pointers do not
need to match but the text must.

Returns:

TRUE for success, FALSE for failure.

Known bugs:

None.

See also:

AddToDDListBox

ClearDDListBox

MakeDDListBox

MakeSubDDListBox

1.150 SetDDListBoxPopup function

Function prototype:

BOOL SetDDListBoxPopup(DDListBox *l, int x, int y, int width, int height);

Description:

Usually when you click on the button on the right hand end of the text
portion of a drop-down list, the list will drop immediately below the
button (or immediately above if the drop-down list box is close to the
bottom of the screen). The SetDDListBoxPopup allows you to specify
where the list box will pop up when the button is pressed.

Parameters:

l: A pointer to the drop-down list box which is to pop up rather
than drop down.

x: The distance in pixels between the left edge of the screen and
the left edge of the area where you want the list to pop up.

y: The distance in pixels between the top edge of the screen and
the top edge of the area where you want the list to pop up.

Note that the x and y parameters are both relative to the screen
not the window.

width: The width in pixels of the list when it pops up. If you specify

foxgui 152 / 203

-1 for the width, the Gui will calculate the width necessary for
all items in the list to be shown without being truncated and
will use that width for the list box when it pops up. The
calculation actually takes place when the list box pops up
(not when you call this function) so that items added to or
removed from the list after calling this function are also taken
into account. This does make dropping the list marginally
slower especially if there is a large number of items in the
list but it means that in an application where the user can
choose the font, you don’t have to worry about calculating how
wide you want the box to be - FoxGUI will work it out for you.
Note that if the width is set to -1, the x parameter is ignored
because the Gui will have to calculate where to place the left
edge of the box so that it will fit on the screen.

height: The height (in lines of text) of the list when it pops up. This
is rather like the MaxHeight parameter to the function

MakeDDListBox
.

Returns:

TRUE for success, FALSE for failure. Note that this function will fail
if the area described in the x, y, width and height parameters extends
beyond the boundary of the screen.

Known bugs:

None.

See also:

MakeDDListBox

MakeSubDDListBox

1.151 SortDDListBox function

Function prototype:

void SortDDListBox(DDListBox *p, int flags);

Description:

Sort the items in the specified drop-down list box into the order
specified by the flags supplied. This will have no immediately visible
effect on the drop-down list box but will affect the order in which the
items are shown next time the user drops the list.

Parameters:

p: A pointer to a FoxGUI drop-down list box whose items are to be
sorted.

foxgui 153 / 203

flags: The available flags are NUM_ASCENDING, NUM_DESCENDING,
ASCENDING, DESCENDING and IGNORE_CASE. ASCENDING and DESCENDING
specify that sorting should be alphabetic and should be ascending
or descending respectively. NUM_ASCENDING and NUM_DESCENDING
specify that the sorting should be numeric - i.e. treat the text
as numbers. The difference is that alphabetically, the string
"02" would come before the string "1" whereas if the strings were
converted to numbers, the correct numerical order would be
obtained. The IGNORE_CASE flag, when combined with either of the
alphabetic flags ASCENDING or DESCENDING causes the case of the
characters to be ignored when sorting (without this, the entire
alphabet of upper case characters is considered to come before
any of the lower case characters). If no flags are specified,
the DESCENDING flag is assumed.

Known bugs:

None.

See also:

AddToDDListBox

MakeDDListBox

MakeSubDDListBox

1.152 GetDDListBoxID function

Function prototype:

int GetDDListBoxID(DDListBox *l)

Description:

Returns the id of the specified drop-down list box, as supplied to

MakeDDListBox
or
MakeSubDDListBox
when the drop-down list box was

created. See
MakeDDListBox
or
MakeEditBox
for details.

Parameters:

l: A pointer to the FoxGUI drop-down list box whose id you want to know.

Returns:

foxgui 154 / 203

The id of the specified drop-down list box.

See also:

GetEditBoxID

MakeDDListBox

MakeEditBox

MakeSubDDListBox

1.153 GetDDListBoxText function

Function prototype:

char *GetDDListBoxText(DDListBox *l)

Description:

Returns a pointer to a NULL terminated string containing the text
currently displayed in the text portion of a drop-down list box.
Passing a sub-list box as a parameter to this function would be
meaningless.

Parameters:

l: A pointer to the drop-down list box whose current text you want to
know.

Returns:

A pointer to a NULL terminated text string containing the text currently
shown in the text portion of the drop-down list box. The pointer
returned is a pointer to the actual buffer used by the drop-down list
box so you should never directly modify this string in any way. If you
keep a copy of the pointer you should also remember that it will become
invalid when the drop-down list box is destroyed. The safest thing to
do is make your own copy of the string using a function such as strcpy.
If this function fails, NULL will be returned. If there is no text in
the box then an empty string will be returned. Remember that the text
may not necessarily match an item in the drop-down list box itself.
This will happen if no item has been selected, the item has been
selected from a sub-list box, the item selected has since been removed
from the list or the text has been set to a non-matching value by
calling the function

SetDDListBoxText
.

See also:

GetEditBoxText

foxgui 155 / 203

MakeDDListBox

MakeSubDDListBox

RemoveFromDDListBox

SetDDListBoxText

1.154 SetDDListBoxText function

Function prototype:

BOOL SetDDListBoxText(DDListBox *l, char *c)

Description:

Set the text shown in the text portion of a drop-down list box. Note
that the text need not match any of the items available in the list for
selection by the user although I can’t really see why you would want to
do that.

Parameters:

l: A pointer to the drop-down list box whose text you want to set.
c: A pointer to a NULL terminated text string containing the text you

wish to put in the text portion of the drop-down list box. A copy
will be made of the string supplied so there is no need to preserve
the string passed after calling the function.

Returns:

TRUE for success, FALSE for failure.

See also:

SetEditBoxText

MakeDDListBox

MakeSubDDListBox

GetDDListBoxText

1.155 FoxGUI Outputbox functions

Output boxes provide a convenient way of placing text or data onto ←↩
a FoxGUI

window. If you want a piece of static text placed in a window (for example

foxgui 156 / 203

a title or label of some description) you can make an output box at that
position and then set the output box text using one of the functions below.
Alternatively, if you want to display a piece of data that may change
during the time the program is running, an output box is perfect for that
too. Just make the output box and then use one of the functions below to
set the output box text each time it needs to change. As with edit boxes,
TEXT, INT and FLOAT types are supported and the number of decimal places
for FLOAT types can be specified.

The following outputbox functions are currently available :-

MakeOutputBox

SetOutputBoxCols

SetOutputBoxDP

SetOutputBoxDouble

SetOutputBoxInt

SetOutputBoxText

GetOutputBoxID
See also:

Destroy

Hide

Show

1.156 MakeOutputBox function

Function prototype:

OutputBox *MakeOutputBox(void *Parent, int x, int y, int width, int len,
int id, char *InitialValue, long flags, void *extension);

Description:

Create a new output box in the specified window or frame.

Parameters:

Parent: A pointer to the FoxGUI window or frame in which to create
the output box.

x: The coordinate of the left edge of the new output box
relative to the left hand edge of the specified
window/frame.

y: The coordinate of the top edge of the new output box
relative to the top edge of the specified window/frame.

foxgui 157 / 203

Note that this is from the very top of a window so a y
coordinate of 0 will cause the output box to be at least
partly obscured by the window’s title bar if it has one.

width: The width of the output box in pixels. This width
includes the border if one is specified (see flags below).

len: The maximum length (in characters) of text that can be
shown in the output box. This will be used to allocate
memory for the text buffer so you should try not to set
this higher than you need it. This number cannot be more
than 256.

id: Sets the id of the output box which can be retrieved at
any time with the
GetOutputBoxID
function. The id for an

output box is used in exactly the same way as the id of an
edit box. See
MakeEditBox
for a full description.

InitialValue: A string containing text to show in the outputbox.
Specifying a non-NULL value here is equiuvalent to setting
this to NULL and then immediately calling
SetOutputBoxText

flags: Currently seven flags are available for use with ←↩
output

boxes: THREED, NO_BORDER, JUSTIFY_LEFT, JUSTIFY_CENTRE,
JUSTIFY_RIGHT,
S_AUTO_SIZE
and S_FONT_SEMNSITIVE.

If the NO_BORDER flag is specified then the output box will
not have a border. If the THREED flag is specified then
the output box will have a three dimensional border drawn
in the current Gui pens (these can be modified by calling

SetGuiPens
). If neither flag is specified then the
output box will have a two dimensional border in the
current default border colour. The three JUSTIFY_ flags
are mutually exclusive. At most one of them should be
specified. If the JUSTIFY_LEFT flag is set then any text
placed in the output box with the functions

SetOutputBoxText
,
SetOutputBoxDouble

or
SetOutputBoxInt
will begin at the left edge

of the output box. If JUSTIFY_CENTRE is specified then
text will appear centred within the bounds of the output
box and if JUSTIFY_RIGHT is selected then the right edge of
the text will be aligned with the right edge of the output
box. If none of the JUSTIFY_ flags is selected then
JUSTIFY_LEFT is used by default. Starting with release
2.0, whichever justification method is selected, the text
will be clipped appropriately to ensure that it never
extends beyond the border of the output box. If the output
box is resized (due to a window resizing) then some of the

foxgui 158 / 203

clipped text may become visible or more may be clipped.
If the S_FONT_SENSITIVE flag is specified then the output
box width and height are set according to font size and
caption. Output boxes with this flag set will still resize
when in a resizable window because their contents may
change and so resizing may still be important.

extension: This is reserved for future expansion and should be set to
NULL.

Returns:

If successful, a pointer to the new output box, otherwise NULL.

Known bugs:

None.

See also:

Destroy

DisableControl

EnableControl

Hide

Show

SetOutputBoxCols

SetOutputBoxDP

SetOutputBoxDouble

SetOutputBoxInt

SetOutputBoxText

GetOutputBoxID

WriteText

1.157 SetOutputBoxCols function

Function prototype:

void SetOutputBoxCols(OutputBox *ob, int Bcol, int Tcol, BOOL refresh);

Description:

Modify the colours of an existing FoxGUI output box.

foxgui 159 / 203

Parameters:

ob: A pointer to the output box whose colours are to be modified.
refresh: If TRUE, redraw the output box in its new colours.

The Bcol and Tcol parameters are identical to the Bcol and Tcol
parameters passed to

MakeOutputBox
.

Known bugs:

None.

See also:

MakeOutputBox

SetOutputBoxDP

SetOutputBoxDouble

SetOutputBoxInt

SetOutputBoxText

1.158 SetOutputBoxDP function

Function prototype:

void SetOutputBoxDP(OutputBox *p, int dp);

Description:

Set the number of decimal places which will be shown when a floating
point (non integral) number is shown in the output box specified. This
function will not affect text placed in the output box using the
functions

SetOutputBoxInt
and
SetOutputBoxText

. Only text set
using the function SetOutputBoxFloat is affected.

Parameters:

p: A pointer to the output box.
dp: The number of figures to show after the decimal point when floating

point numbers are displayed.

Known bugs:

None.

foxgui 160 / 203

See also:

MakeOutputBox
SetOutputBoxDouble

1.159 SetOutputBoxDouble function

Function prototype:

void SetOutputBoxDouble(OutputBox *p, double num);

Description:

This function converts the double-precision floating point number passed
to it into text and places that text in the output box specified. You
might use this to display the result of a calculation in a window. If
you want to limit the number of decimal places shown in the output box
without having to round the number, you can do so by calling the
function

SetOutputBoxDP
. The justification specified in the flags

parameter of
MakeOutputBox
is respected by this function.

Parameters:

p: A pointer to the output box whose text is to be set or replaced.
num: The number to place in the output box.

Known bugs:

None.

See also:

MakeOutputBox

SetOutputBoxDP

SetOutputBoxInt

SetOutputBoxText

1.160 SetOutputBoxInt function

foxgui 161 / 203

Function prototype:

void SetOutputBoxInt(OutputBox *p, int num);

Description:

This function converts the integral number passed to it into text and
places that text in the output box specified. You might use this to
display the result of a calculation in a window. The justification
specified in the flags parameter of

MakeOutputBox
is respected

by this function.

Parameters:

p: A pointer to the output box whose text is to be set or replaced.
num: The number to place in the output box.

Known bugs:

None.

See also:

MakeOutputBox

SetOutputBoxDouble

SetOutputBoxText

1.161 SetOutputBoxText function

Function prototype:

void SetOutputBoxText(OutputBox *p, char *text);

Description:

Set or modify the text of the specified output box to the text passed to
this function. The justification specified in the flags parameter of

MakeOutputBox
is respected by this function.

Parameters:

p: A pointer to the output box whose text is to be set or replaced.
text: A pointer to the NULL terminated string to be placed into the

output box. After calling the function SetOutputBoxText, it is
not necessary to maintain the text string passed - the function
will make it’s own copy of the string.

foxgui 162 / 203

Known bugs:

None.

See also:

MakeOutputBox

SetOutputBoxDouble

SetOutputBoxInt

1.162 GetOutputBoxID function

Function prototype:

int GetOutputBoxID(OutputBox *o)

Description:

Returns the id of the specified output box. Output box ids are entirely
analogous to edit box ids, a full description of which can be found in
the function

MakeEditBox
.

Parameters:

p: A pointer to the output box whose id you want to know.

Returns:

The id of the output box specified.

See also:

MakeOutputBox

1.163 FoxGUI Tab Controls

Tab controls, like frames can be holders of other controls. It’s ←↩
difficult

to explain to an Amiga user what a tab control is like because I’ve never
seen them used in Amiga programs before. PC users may have seen them used
in the options dialogue in Microsoft Word for Windows 6 or 7. Basically a
tab control is a frame with a row of buttons along the top edge. Clicking
on any of the buttons will change the contents of the frame. You may, for

foxgui 163 / 203

example, have a program that is highly configurable and hence has a lot of
options the user can choose from. Let’s say, for example that the user can
change the screen mode that the program runs in, the pallette used for the
screen and several other program specific options. The number of controls
requiured to display all of these options may well be more than you can
easily (or neatly) fit into a window (especially if the program is allowed
to run in the basic Amiga Pal modes) so the answer is a tab control. You
create a tab control with three frames (and hence three buttons). The
frames in a tab control are always the same size as each other and directly
on top of each other so that you only see one frame at a time. The first
frame could contain the screen mode preferences, the second the pallette
preferences and the third all of the other options. The three buttons
could then be labelled "Screen", "Pallette" and "Other". When you create
controls in a tab control frame you use the normal "Make" functions
(MakeButton, MakeEditBox etc) but rather than passing a pointer to a
GuiWindow as the first parameter, you pass a pointer to the frame in the
tab control (see the

TabControlFrame
function). You do not need to write

any code to handle what happens when the user clicks the buttons along the
top edge of the tab control - this is automatically handled for you by
FoxGUI. When you click the first button, the contents of the first frame
becomes visible. When you click the second button, the contents of the
second frame becomes visible and the contents of the frame shown previously
becomes invisible.

Note that any type of control can be created in the frame of a tab control
(including frames and further tab controls!)

Rather than try in vain to describe this further, I’ll leave it to you to
look at the "Characters" program available for download from my web page
(see

Suggestions
section for the address) which makes use of tab

controls.

The following tab control functions are currently available :-

MakeTabControlArray

TabControlFrame
See also:

Destroy

DisableControl

EnableControl

1.164 MakeTabControlArray function

foxgui 164 / 203

Function prototype:

TabControl *MakeTabControlArray(void *Parent, int left, int top, int width, int ←↩
height,

int tabheight, short flags, int *tabwidth, char **caption, ←↩
TabControlExtension *ext);

Description:

Create a new tab control.

Parameters:

Parent: A pointer to the window or frame in which to create the new
tab control.

left: The left edge (in pixels) of the tab control relative to the
left edge of the parent window/frame.

top: The top edge (in pixels) of the row of buttons (tabs) which
runs along the top edge of the tab control, relative to the
top of the parent window/frame.

width: The width (in pixels) of the tab control.
height: The height (in pixels) of the framed part of the tab control.

The overall height of the tab control will be
height+tabheight.

tabheight: The height (in pixels) of the tabs along the top edge of the
control.

flags: The following flags are currently available for tab controls
:- TC_CLEAR, S_AUTO_SIZE. The TC_CLEAR flag causes the
background colour of the tab control to be the colour of the
window or frame in which it was created. The S_AUTO_SIZE
flag causes the tab control to get resized if the parent
(window or frame) is resized.

tabwidth: An array of numbers specifying the width of each of the tabs
(the buttons along the top edge of the tab control). The
final entry in the array should be 0 to indicate that the end
has been reached. E.g. if you wanted three tabs with widths
of 20, 30 and 40 pixels respectively then you would pass an
array of integers containing 20, 30, 40 and 0.

caption: A pointer to an array of text strings containing the text to
appear in the tabs (the buttons along the top edge of the tab
control). This array should contain one fewer entries than
the tabwidth array because there is no need for an extra
entry to indicate the end of the array. In other words, if
you want three tabs then you pass an array of three strings.
For example, to create three tabs each of width 70 pixels
with the captions "Screen", "Pallette" and "Other", the
tabwidth and caption arrays would be defined as follows:
int tabwidth[4] = { 70, 70, 70, 0 };
char *caption[3] = {"Screen", "Pallette", "Other" };

ext: This is reserved for future expansion and should be NULL.

Returns:

If successful, a pointer to the new tab control. Otherwise NULL.

Known bugs:

foxgui 165 / 203

None.

See also:

Destroy

TabControlFrame

1.165 TabControlFrame function

Function prototype:

Frame *TabControlFrame(TabControl *tc, int frameno);

Description:

Controls can be created in windows or in frames. A tab control is
really just a series of frames so to create a control in a tab control,
you first need to get a pointer to the frame. This function returns a
pointer to a frame in a tab control.

Parameters:

tc: A pointer to a tab control.
frameno: The frame number of the frame you want a pointer to. Note that

the frame numbers start at zero so if you have a tab control
with seven tabs, the frames will be numbered 0 - 6.

Returns:

If successful, a pointer to a frame within a tab control. Otherwise
NULL. Note that if frameno is more than the number of frames in the tab
control minus one (frames are numbered starting from zero) then this
function will return NULL.

Known bugs:

None.

See also:

MakeTabControlArray

1.166 FoxGUI Miscelaneous functions

The following miscelaneous functions aren’t directly related to ←↩
any type of

FoxGUI control but are still very important. It is worth browsing the

foxgui 166 / 203

other functions below because they could save you a lot of time and effort
in developing equivalents yourself.

The following miscelaneous functions are currently available :-

CheckMessages

Destroy

DestroyM

DisableControl

DisableM

DrawLines

EnableControl

EnableM

GetDefaultFontCopy

GetWindow

GuiGetLastErr

GuiLoop

GuiMalloc

GuiMessage

GuiTextLength

Hide

IntuiWindow

LibVersion

RegisterGadget

SetDefaultCols

SetDefaultFont

SetDelay

SetGuiPens

SetGuiPensFromPubScreen

SetPeriod

SetPostText

foxgui 167 / 203

SetPreText

Show

UnRegisterGadget

WriteText
The following miscelaneous operations are currently defined as ←↩

macros :-

GuiFree

1.167 CheckMessages function

Function prototype:

void CheckMessages(void);

Description:

Tells FoxGUI to check for any pending messages and respond to them
immediately. See the section on

Multi-threading
for more information.

Known bugs:

None.

See also:

Multi-threading

1.168 Destroy function

Function prototype:

void Destroy(void *Control, BOOL refresh);

Description:

Destroys the specified control. This function destroys any control
including windows and screens. The only exceptions are menus, menu
items and sub-menu items.

Parameters:

foxgui 168 / 203

Control: A pointer to the control to destroy.
refresh: If TRUE, refresh the parent window so that the control is

visibly removed from the window. If you are in the process of
destroying all of the controls in a window in order to close
the window then you might want to set this to FALSE which will
make the process faster. For certain controls (such as windows
and screens) this parameter is ignored and a refresh occurs.

Known bugs:

Can’t be used to destroy menus, menu items or sub-menu items.

See also:

DisableControl

EnableControl

GetWindow

Hide

Show

1.169 DisableControl function

Function prototype:

void DisableControl(void *Control, BOOL refresh);

Description:

Disables the specified control. This function works for any control
except menus, menu items, sub-menu items, output boxes, screens and
progress bars (disabling output boxes and progress bars would be pretty
meaningless since the user can’t interact with them anyway). Passing a
pointer to a GuiWindow is equivalent to calling

SleepPointer
and passing a pointer to a timer is equivalent to calling

PauseTimer
.

Parameters:

Control: A pointer to the control to disable.
refresh: If TRUE, the control will be redrawn to appear disabled. For

controls which have no imagery (such as timers) and for certain
other controls (such as windows) this parameter is ignored.

Known bugs:

None.

foxgui 169 / 203

See also:

Destroy

EnableControl

GetWindow

Hide

Show

1.170 DrawLines function

Function prototype:

void DrawLines(GuiWindow *win, short *points, int count, int col);

Description:

Draw straight line(s) in the specified FoxGUI window.

Parameters:

win: A pointer to a FoxGUI window in which to draw the line(s).
points: A pointer to an array of points describing the lines to be

drawn. Each pair of numbers is treated as the x and y
coordinates of a point relative to the top left of the specified
window. Lines are drawn from the first point given to the
second, from the second point to the third etc until lines have
been drawn between count sets of coordinates.

count: The number of points between which to draw lines. The points
array should contain count sets of coordinates (i.e. count * 2
numbers).

col: The colour in which to draw the lines.

Known bugs:

None.

1.171 EnableControl function

Function prototype:

void EnableControl(void *Control, BOOL refresh);

Description:

Enables the specified control. This function works for any control
except menus, menu items, sub-menu items, output boxes, screens and

foxgui 170 / 203

progress bars (enabling output boxes and progress bars would be pretty
meaningless since the user can’t interact with them anyway).
Passing a pointer to a GuiWindow is equivalent to calling

WakePointer
and passing a pointer to a timer is equivalent to calling

UnpauseTimer
.

Parameters:

Control: A pointer to the control to enable.
refresh: If TRUE, the control will be redrawn to appear enabled. For

controls which have no imagery (such as timers) and for certain
other controls (such as windows) this parameter is ignored.

Known bugs:

None.

See also:

Destroy

DisableControl

GetWindow

Hide

Show

1.172 GetWindow function

Function prototype:

GuiWindow *GetWindow(void *Control);

Description:

Returns a pointer to the window in which the specified control was
created. If the control was created in a frame or a tab control then
a pointer to the window in which the frame or tab control was created is
returned. Similarly if the control is in a frame which itself is in a
frame which is in a tab control then a pointer to the window in which
the tab control was created is returned.

Parameters:

Control: A pointer to the control. Note that the control may not be a
menu, menu item, sub-menu item or screen.

Returns:

foxgui 171 / 203

A pointer to the GuiWindow in which the control was created.

Known bugs:

Doesn’t work for menus, menu items or sub-menu items.

See also:

Destroy

DisableControl

EnableControl

Hide

Show

1.173 GuiLoop function

Function prototype:

void GuiLoop(void);

Description:

The GuiLoop function is where all of the Gui events are processed. You
call it when you have set up all of the screens/windows/controls that
you want the user to have access to when they first run your application
and it handles all of the input events for the controls you have set up.
When you create a control, you usually supply a pointer to a function as
a parameter - for example when you create a button using the MakeButton
function, one of the parameters is a pointer to a function to call when
the button is clicked. It is the GuiLoop function which ensures that
the correct functions are called when these events occur. These
call-back functions can themselves create and destroy controls and when
the call-back function returns it generally has to return one of two
values - one specifying that GuiLoop should continue to process events
for your existing windows and controls (and also for any new controls
that you created from within the call-back function) and one that
informs the GuiLoop function that you’re all done and will cause GuiLoop
to return.

Known bugs:

None.

See also:

EndGui
InitGui

foxgui 172 / 203

1.174 GuiMalloc function

Function prototype:

void *GuiMalloc(unsigned long NoOfBytes, unsigned long flags);

Description:

This function allocates memory. It is the function used internally
within FoxGUI to allocate memory whenever FoxGUI needs it. I have made
it available externally because it provides a little bit of control over
memory allocation which is not available through other means. Memory
allocated by the GuiMalloc function should be free’d with the

GuiFree
macro.

GuiMalloc works in one of two ways depending upon whether the
FAST_MALLOCS flag was specified in the call to InitGui . One provides
error checking code but is slow by comparison to the other which does
not. It is suggested that you use the slower method while developing
your programs (by passing 0 as the flags parameter to InitGui) and then
when they are bug free and ready to release, change the call to InitGui
to pass FAST_MALLOCS as the flags parameter to speed things up by
removing the error checking code.

If FAST_MALLOCS has not been specified, GuiMalloc works as follows:
When you ask GuiMalloc to allocate some memory, it actually allocates
extra bytes at the start and end of the memory you asked for and puts
special characters in these bytes along with a record of the number of
bytes allocated. Then, when you call GuiFree with a pointer to some
memory to free it checks for those special characters immediately before
and after the memory you allocated and returns an error if they are not
there. This prevents you from attempting to free memory that you haven’t
allocated and memory that has become corrupted. If memory has become
corrupted it’s usually due to something like writing beyond the bounds
of an array. In general, you wouldn’t find out about this until your
Amiga crashed due to some processes memory having been scribbled on by
itself or another process but by using GuiMalloc and GuiFree there’s a
chance that you will be allerted to it sooner. Of course, this sort of
protection isn’t as good as that provided by running Enforcer and
Mungwall but it doesn’t require an MMU (which Enforcer does) and if a
call to GuiFree fails, the Gui will tell you exactly which call failed
by telling you the filename and line number of the offending GuiFree
call.

Parameters:

NoOfBytes: The number of bytes of memory to allocate.
flags: At the moment, the only available flag is MEMF_CLEAR which

will cause all of the allocated memory to be set to zeros if
specified.

Returns:

A pointer to the allocated memory or NULL for failure. It is essential
that you check the return code of this function before using the memory

foxgui 173 / 203

- writing over NULL memory is very likely to cause a crash!

Known bugs:

None.

See also:

InitGui

GuiFree

1.175 GuiMessage function

Function prototype:

short GuiMessage(void *Scr, char *text, char *title, int detail, int block,
int flags);

Description:

Display a message to the user modally and get the user’s response. This
function opens a window on the specified screen. The window displays
the specified message and contains one or more buttons which can be
specified in the flags parameter. The return value of the function
depends upon which button the user presses to respond to the message.
The message is modal so the user will not be able to activate or
interact with any FoxGUI controls in any other windows while the message
is shown.

Parameters:

Scr: A pointer to a FoxGUI screen (or the name of a public screen)
on which to display the message.

text: The text of the message. The text may contain linebreak
characters (specified as ’\n’ in C) to display multi-line
messages.

title: A short text string to show in the title bar of the message
window.

detail: The pen colour to use for the windows detail pen and for the
message text.

block: The pen colour to use for the windows block pen.
These are equivalent to the Dpen & Bpen parameters passed to the

OpenGuiWindow
function.

flags: The flags determine the buttons and images shown in the window.
A combination of the following flags should be used to determine
which buttons are shown: GM_OKAY, GM_YES, GM_NO, GM_CANCEL,

All buttons appear along the bottom edge of the window and are
spaced such that the window appears balanced. The exact location
of each button will depened on how many other buttons are visible.

foxgui 174 / 203

Specifying GM_OKAY on its own will give the message window a
single button labelled "Okay". This is useful for messages
giving the user some information where they merely have to
respond to proceed.

Specifying GM_OKAY and GM_CANCEL together will give the window
two buttons labelled "Okay" and "Cancel". This might be useful
when the user has just told your application to erase the entire
contents of your hard-disk and you want to get confirmation
before proceeding. Specifying GM_YES in combination with GM_NO
gives a similar effect but the buttons are labelled "Yes" and
"No" instead of "Okay" and "Cancel".

Specifying GM_YES, GM_NO and GM_CANCEL together will give the
window three buttons labelled "Yes", "No" and "Cancel". This
gives the user alternative methods of proceeding or the option
not to proceed.

All of the buttons have hot-keys, the hot-key being the first
letter of the buttons caption in each case. Also, the Yes and
Okay buttons can be activated by the return key and the No and
Cancel buttons can be activated by the escape key. If the No
and Cancel buttons are both present in the window then the
escape key will activate the Cancel button.

The flags GM_INFORMATION, GM_EXCLAMATION, GM_QUESTION, GM_X,
GM_STOP and GM_CROSSBONES cause an image to be displayed at
the left of the message window.

Returns:

Returns either GM_OKAY, GM_YES, GM_NO or GM_CANCEL depending on the
response selected by the user. If the function fails to open the window
and display the message, it will return -1 or 0 immediately.

Known bugs:

None.

1.176 GuiTextLength function

Function prototype:

long GuiTextLength(char *text, struct TextAttr *font);

Description:

Returns the length in pixels of the specified string using the specified
font.

Parameters:

text: A text string to find the length of.
font: A pointer to an intuition font to use when working out the string

foxgui 175 / 203

length. Note that if font is NULL then FoxGUI will use the
current default Gui font which may not be the font you wish to use
when rendering the text.

Returns:

The length of the string in pixels.

Known bugs:

None.

1.177 Hide function

Function prototype:

void Hide(void *Control);

Description:

Hides the specified control, removing it’s imagery from the window,
frame or tab control which contains it. When a control is hidden it can
still be updated (for example,

SetEditBoxText
still works when an edit

box is hidden) but changes will not be seen until the control is shown
again (using the

Show
function). The user of your application will

not be able to interact with a hidden control in any way. If a frame or
tab control is hidden, any controls created within it will also be
hidden. These controls will become visible again when the frame/tab
control is shown unless they have been hidden independantly before or
since the parent control was hidden. It is never possible to make a
control visible if it is in a hidden frame or tab control.

Parameters:

Control: A pointer to the control to be hidden.

Known bugs:

Screens, windows, timers, menus, menu items and sub-menu items cannot be
hidden. (Timers have no imagery so in effect they are always hidden).

See also:

Show

1.178 IntuiWindow function

foxgui 176 / 203

Function prototype:

struct Window *IntuiWindow(GuiWindow *gw);

Description:

This function returns a pointer to the intuition Window structure used
by the specified FoxGUI window. It is mainly of use when adding
non-FoxGUI gadgets to a FoxGUI window.

Parameters:

gw: A pointer to the FoxGUI window whose intuition Window you require a
pointer to.

Returns:

If gw is a pointer to a FoxGUI window then a pointer to the relevant
intuition window is returned, otherwise NULL is returned.

Known bugs:

None.

See also:

RegisterGadget

UnRegisterGadget

1.179 LibVersion function

Function prototype:

short LibVersion(void);

Description:

Since calling OpenLibrary for the FoxGUI library opens the intuition
library for you, this function allows you to find out what version of
the intuition library was opened. The return value of this function
will never be less than 33 since that is the minimum requirement for
FoxGUI.

Returns:

The version number of the intuition library opened by InitGui.

Known bugs:

None.

foxgui 177 / 203

1.180 RegisterGadget function

Function prototype:

BOOL RegisterGadget(struct Gadget *gad, GuiWindow *gadwin,
int (*gadfn)(struct gadget*, struct IntuiMessage *));

Description:

Registers a user-created intuition gadget with FoxGUI so that FoxGUI can
inform the user (by calling a user-defined function) whenever an
intuition message is received which relates to that gadget (for example
when the gadget is clicked on with the mouse).

Parameters:

gad: A pointer to the intuition gadget to register (note that this
function can be called before or after calling the intuition
function AddGadget to add the gadget to the window’s gadget
list).

gadwin: A pointer to the FoxGUI window which contains (or is about to
contain) the gadget. If the gadget is created in a non-FoxGUI
window then this parameter should be NULL.

gadfn: A pointer to the function to call whenever the gadget gets an
intuition message (an IntuiMessage). The prototype should be as
follows:

int CALLBACK MyFunction(struct Gadget *gad, struct
IntuiMessage *message)

When the function is called it will be passed a pointer to the
gadget to which the IntuiMessage refers and a pointer to the
IntuiMessage itself (note that this is a pointer to the actual
IntuiMessage that intuition sent to FoxGUI so it is important
that you don’t modify it in any way). It is your responsibility
to reply to the message (with the intuition function ReplyMsg)
when you have finished with it - FoxGUI doesn’t do this for you.
Your function should return either

GUI_CONTINUE or GUI_END
.

Returns:

TRUE if successful, FALSE otherwise.

Known bugs:

None.

See also:

IntuiWindow

UnRegisterGadget

foxgui 178 / 203

1.181 SetDelay function

Function prototype:

void SetDelay(int time);

Description:

When the user clicks on a pushbutton which was created with the BN_AR
flag (so that the button will be triggered continually while it is held
down), the button will be triggered immediately and then there will be a
DELAY before it is next triggered, after which there will be a regular
PERIOD between subsequent triggers. This function sets that initial
delay.

Parameters:

time: The time (in milliseconds) to delay after the initial triggering
of auto-repeating pushbuttons before triggering again.

Known bugs:

None.

See also:

SetPeriod

1.182 SetGuiPens function

Function prototype:

void SetGuiPens(short hipen, short lopen);

Description:

Sets the pen colours used by FoxGUI to render 3D borders. The Gui uses
two colours - one bright and one dark to make the objects appear as
though light were being shone across the screen from a light source at
the top left. Hence, objects which stand out from the screen will have
a bright top left hand corner and a dark (shaddowed) bottom right
corner. Objects which appear pressed into the screen will have a
shaddowed top left corner and a bright bottom right corner.

Parameters:

hipen: A bright colour used to draw well lit edges (1 by default).
lopen: A dark colour used to draw shaddowed edges (2 by default).

The default values shown are used if this function is not called by your
application.

foxgui 179 / 203

Known bugs:

None.

1.183 SetGuiPensFromPubScreen function

Function prototype:

BOOL SetGuiPensFromPubScreen(char *pub_screen_name);

Description:

Like the
SetGuiPens
function, this function sets the pen colours used by

FoxGUI to render 3D borders. Unlike SetGuiPens where you pass the pen
colours to use, this function takes the name of a public screen as a
parameter and sets the Gui pens to the same values as used by the public
screen named. This function only works on Amigas which support public
screens.

This function is particularly useful for picking up the pen colours from
the workbench screen (the public name of the workbench screen is
"Workbench"). This ensures that whatever the users system colours are,
the FoxGUI gadgets will appear in the same colours and hence in 3D.

Parameters:

pub_screen_name: The name of the public screen whose pens are to be
copied (public screen names are case sensitive).

Returns:

TRUE if successful, FALSE otherwise.

Known bugs:

None.

1.184 SetPeriod function

Function prototype:

void SetPeriod(int time);

Description:

When the user clicks on a pushbutton which was created with the BN_AR
flag (so that the button will be triggered continually while it is held
down), the button will be triggered immediately and then there will be a
DELAY before it is next triggered, after which there will be a regular

foxgui 180 / 203

PERIOD between subsequent triggers. This function sets that period.

Parameters:

time: The time (in milliseconds) to delay between each triggering of the
auto-repeating pushbutton.

Known bugs:

None.

See also:

SetDelay

1.185 SetPreText function

Function prototype:

OutputBox *SetPreText(Widget *Parent, char *text);

Description:

Creates a pre-text lable for a control (i.e. prints the specified text
string to the left of the specified control). The label is stored as
part of the control and will be automatically hidden if the control is
hidden or destroyed if the control is destroyed. It is not necessary,
therefore to keep the return value of SetPreText. The label is actually
created as a borderless OutputBox but calling Destroy() and passing a
pointer to this OutputBox will not work - the only way to destroy the
pre-text label is to destroy the control it is attached to.

Parameters:

Parent: A pointer to the control to which the text will be attached.
This can be any type of control except a Window, a Screen,
a Frame or a Menu.

text: The text to print to the left of the control.

Returns:

A pointer to an OutputBox. However, there is little point in keeping
the return value of this function as discussed above.

See also:

SetPostText

foxgui 181 / 203

1.186 SetPostText function

Function prototype:

OutputBox *SetPostText(Widget *Parent, char *text);

Description:

Creates a post-text lable for a control (i.e. prints the specified text
string to the right of the specified control). The label is stored as
part of the control and will be automatically hidden if the control is
hidden or destroyed if the control is destroyed. It is not necessary,
therefore to keep the return value of SetPostText. The label is actually
created as a borderless OutputBox but calling Destroy() and passing a
pointer to this OutputBox will not work - the only way to destroy the
post-text label is to destroy the control it is attached to.

Parameters:

Parent: A pointer to the control to which the text will be attached.
This can be any type of control except a Window, a Screen,
a Frame or a Menu.

text: The text to print to the right of the control.

Returns:

A pointer to an OutputBox. However, there is little point in keeping
the return value of this function as discussed above.

See also:

SetPreText

1.187 Show function

Function prototype:

void Show(void *Control);

Description:

Shows the specified hidden control. Controls are automatically shown
when they are first created so this function is only used to show
controls which have subsequently been hidden using the

Hide
function.

If a frame which contains other controls is shown then any controls
contained within the frame will also be shown unless they themselves
have been hidden either before or after the frame was hidden. The same
is true for tab controls. For example, calling Show for a hidden
control in a hidden frame won’t cause the control to be shown
immediately because the parent frame is still hidden but if the parent

foxgui 182 / 203

frame is now shown (using the Show function again) then the frame and
the control will become visible.

Parameters:

Control: A pointer to the hidden control to show.

Known bugs:

Screens, windows, timers, menus, menu items and sub-menu items cannot be
hidden (and hence shown). (Timers have no imagery so in effect they are
always hidden).

See also:

Hide

1.188 UnRegisterGadget function

Function prototype:

BOOL UnRegisterGadget(struct Gadget *gad);

Description:

Removes a user-defined gadget from FoxGUI’s registry. This function
should only be used with gadgets that have previously been registered
using the

RegisterGadget
function. You should always remove a gadget

from FoxGUI’s registry when you destroy it.

Parameters:

gad: A pointer to the intuition gadget to remove from the registry.

Returns:

TRUE if successful, FALSE otherwise.

Known bugs:

None.

See also:

RegisterGadget

foxgui 183 / 203

1.189 WriteText function

Function prototype:

void WriteText(GuiWindow *gw, char *text, int x, int y)

Description:

Writes text into a window in the current font and pen colour.

Parameters:

gw: The guiwindow in which to write the text.
text: The text to write.

x: The x coordinate for the text.
y: The y coordinate for the text.

Known bugs:

None.

See also:

MakeOutputBox

1.190 GuiGetLastErr function

Function prototype:

void GuiGetLastErr(char *error, char *file, int *line);

Description:

Returns a description of the last internal Gui error to occur along with
the file and line number where the error occurred. Internal errors are
usually caused by invalid parameters being sent to functions.

Parameters:

error: A pointer to a string in which the error message will be
returned. This should be about 250 characters long in order to
ensure that the error message will always fit.

file: A pointer to a string in which the name of the file that the
error occurred in will be returned. This should be about 25
characters long in order to ensure that the file name will fit,
however, since gui errors can occur when calling FoxGUI macros
(which are called from within your own programs) you should make
sure that this string is at least as long as the name of the
longest file name of your own source code + 1.

line: A pointer to an integer in which the line number of the last
error will be returned. If FoxGUI does not report an error then
this will be returned as 0.

foxgui 184 / 203

Known bugs:

None.

1.191 GuiFree macro

Macro prototype:

void GuiFree(void *p)

Macro definition:

#define GuiFree(p) GuiFreeMem(p,__LINE__,__FILE__)

Description:

This function is used to free memory allocated with the GuiMalloc
function. It can work in one of two ways depending upon whether the
function

UseSafeMallocs
has been called. If UseSafeMallocs has

been called then GuiFree will detect any attempt to free memory that
wasn’t allocated by GuiMalloc or which has become corrupted due to some
form of memory scribble. See the

GuiMalloc
function for more details.

Parameters:

p: A pointer to a section of memory allocated with the GuiMalloc
function.

See also:

GuiMalloc

Warnings on the use of macros

1.192 SetDefaultCols function

Function prototype:

void SetDefaultCols(int BorderCol, int BackCol, int TextCol);

Description:

Sets the default colours used when creating FoxGUI controls. Calling
this function before creating a control will ensure that these colors
are used for that control and any others created subsequently. However,

foxgui 185 / 203

it will have no effect on any controls which have already been created
which means that in theory you could have a different set of colours for
every control.

Parameters:

BorderCol: The colour to use when drawing borders. This parameter is
usually only used when creating a control if the THREED flag
is not specified, otherwise a three-D border is created using
the current Gui shine (high) and shadow (low) pens (see

SetGuiPens
.

BackCol: The colour to use for the background colour of controls.
This will be ignored when the control is clear (e.g. if the
BG_CLEAR flag is specified when creating a tick box or radio
button).

TextCol: The colour to use for any text in FoxGUI controls.

Known bugs:

None.

See also:

SetGuiPens

SetDefaultFont

1.193 SetDefaultFont function

Function prototype:

void SetDefaultFont(char *name, int size, int style);

Description:

Sets the default font used when creating FoxGUI controls. Calling
this function before creating a control will ensure that the specified
font is used for that control and any others created subsequently.
However, it will have no effect on any controls which have already been
created which means that in theory you could have a different font for
every control.

Parameters:

name: The name of the font to use (e.g. "Topaz.font").
size: The font size to use.

style: The font style. This is a combination of the following flags:
FSF_UNDERLINED (if you want an underlined font), FSF_BOLD (if you
want a bold font), FSF_ITALIC (if you want an italic font) and
FSF_EXTENDED if you want an extra wide font. You can combine any
or all of these flags or you can pass 0 for a plain font. These

foxgui 186 / 203

flags are not defined in FoxGUI.h but in the standard intuition
header file graphics/text.h.

Known bugs:

None.

See also:

SetDefaultCols

1.194 EnableM function

Function prototype:

void EnableM(int ObjectType, void *Parent, BOOL refresh);

Description:

This function can be used to enable multiple objects.

Parameters:

ObjectType: The type of object to enable. This can be one of
FrameTypeID, ButtonTypeID, TabControlTypeID, ListBoxTypeID,
TreeControlTypeID, DDListBoxTypeID, EditBoxTypeID,
OutputBoxTypeID, ProgressBarTypeID, TickBoxTypeID,
RadioButtonTypeID, WindowTypeID, ScreenTypeID or
TimerTypeID if you want to enable controls of one
particular type or you can pass 0 to enable controls of all
types.

Parent: This should be a pointer to a GuiWindow if you only want to
enable controls in a particular window or NULL if you want
to enable all controls of the specified type.

refresh: If TRUE then the controls are refreshed.

Known bugs:

None.

Examples:

EnableM(FrameTypeID, MyWindow, TRUE) will enable all frames in the
window MyWindow and will refresh them.

EnableM(0, MyWindow, FALSE) will enable all controls in window MyWindow
but will not refresh them.

EnableM(0, NULL, TRUE) will enable all controls and refresh them.

See also:

foxgui 187 / 203

EnableControl

DisableM

1.195 GetDefaultFontCopy function

Function prototype:

void GetDefaultFontCopy(char *fontname, int bufsize, int *height, int *style)

Description:

This function gets the details of the current GUI font.

Parameters:

fontname: A pointer to a character string to hold the returned
fontname.

bufsize: The size of the fontname buffer.
height: Returns the height of the font.
style: Returns the style of the font.

Known bugs:

None.

1.196 DisableM function

Function prototype:

void DisableM(int ObjectType, void *Parent, BOOL refresh);

Description:

This function can be used to disable multiple objects.

Parameters:

ObjectType: The type of object to disable. This can be one of
FrameTypeID, ButtonTypeID, TabControlTypeID, ListBoxTypeID,
TreeControlTypeID, DDListBoxTypeID, EditBoxTypeID,
OutputBoxTypeID, ProgressBarTypeID, TickBoxTypeID,
RadioButtonTypeID, WindowTypeID, ScreenTypeID or
TimerTypeID if you want to disable controls of one
particular type or you can pass 0 to disable controls of all
types.

Parent: This should be a pointer to a GuiWindow if you only want to
disable controls in a particular window or NULL if you want
to disable all controls of the specified type.

refresh: If TRUE then the controls are refreshed.

foxgui 188 / 203

Known bugs:

None.

Examples:

DisableM(FrameTypeID, MyWindow, TRUE) will disable all frames in the
window MyWindow and will refresh them.

DisableM(0, MyWindow, FALSE) will disable all controls in window MyWindow
but will not refresh them.

DisableM(0, NULL, TRUE) will disable all controls and refresh them.

See also:

DisableControl

EnableM

1.197 DestroyM function

Function prototype:

void DestroyM(int ObjectType, void *Parent, BOOL refresh);

Description:

This function can be used to destroy multiple objects.

Parameters:

ObjectType: The type of object to destroy. This can be one of
FrameTypeID, ButtonTypeID, TabControlTypeID, ListBoxTypeID,
TreeControlTypeID, DDListBoxTypeID, EditBoxTypeID,
OutputBoxTypeID, ProgressBarTypeID, TickBoxTypeID,
RadioButtonTypeID, WindowTypeID, ScreenTypeID or
TimerTypeID if you want to destroy controls of one
particular type or you can pass 0 to destroy controls of all
types.

Parent: This should be a pointer to a GuiWindow if you only want to
destroy controls in a particular window or NULL if you want
to destroy all controls of the specified type. This can
also be a pointer to a FoxGUI screen if ObjectType is
WindowTypeID. In that case all windows in the specified
screen will be closed.

refresh: If TRUE then the controls are refreshed.

Known bugs:

foxgui 189 / 203

None.

Examples:

DestroyM(FrameTypeID, MyWindow, TRUE) will destroy all frames in the
window MyWindow and will refresh them.

DestroyM(0, MyWindow, FALSE) will destroy all controls in window MyWindow
but will not refresh them.

DestroyM(0, NULL, TRUE) will destroy all controls (including windows and
screens) There will be nothing left to refresh!

See also:

DisableM

Destroy

1.198 UseSafeMallocs function

Function prototype:

void UseSafeMallocs(void);

Description:

Tells FoxGUI to use safe memory allocations rather than fast memory
allocations. This modifies the function

GuiMalloc
to keep a record of

allocations made and causes the function
GuiFree
to fail if an invalid

pointer is passed. However, it slows down these functions considerably
so it is generally best to use safe mallocs while developing but then
revert to fast mallocs when you are sure your code is bug free. This
function should be called directly after opening the FoxGUI library if
you wish to use safe mallocs.

Known bugs:

None.

1.199 Warnings and notes on the use of macros

A small number of FoxGUI functions (listed below) are currently defined
as macros rather than real functions. This means that when you call the
macro, the actual text of the macro gets substituted into your code by

foxgui 190 / 203

the preprocessor rather than a link to the function being made at link
time. Although you can use macros exactly as you would use functions
there are a number of things you should bear in mind when doing so :-

Most compilers perform macro substitution on the first parse of your
source code which means that if there is an error on the line with the
macro on it and the compiler shows you the line with the error it won’t
look the way it did when you typed the line in and may make error
spotting more difficult. To help you when this happens, definitions of
all of the FoxGUI macros are included on their pages in this document.

It is not guaranteed that all FoxGUI macros will exist in their current
form in later releases of the Gui. This doesn’t mean that you shouldn’t
use them. There are two things that may cause a macro to change. The
macro may be removed and implemented as a function or the underlying Gui
structures may change necessitating a change in the macro definition.
In either case the prototype will remain the same so there will be no
need for you to change your code - you will just need to recompile it.

You should never be tempted to manually expand the macros. For example,
the macro GetEditBoxID(p) is currently defined as (p)->id. Don’t be
tempted to use (p)->id in your functions. Always use GetEditBoxId(p).
In this way you will ensure that your code will not have to be changed
for future releases of FoxGUI where the macro implementation may be
different.

The following FoxGUI functions are currently implemented as macros :-

@{ " GuiFree " Link GuiFree}

1.200 The GUI_END and GUI_CONTINUE flags

Most user defined callback functions (functions supplied by the ←↩
user

that FoxGUI calls when certain events occur) have to return either
GUI_END or GUI_CONTINUE. GUI_CONTINUE instructs FoxGUI to continue
processing events. GUI_END causes event processing for this process to
stop and the function

GuiLoop
to return.

1.201 The S_AUTO_SIZE flag

The S_AUTO_SIZE flag can be specified for all visible FoxGUI ←↩
controls

except windows and screens. If any control has the S_AUTO_SIZE flag set
and the window has a size gadget then resizing the window will cause the
control to be resized and positioned so that it’s size and position
relative to the window remain the same.

See also:

foxgui 191 / 203

OpenGuiWindow

MakeProgressBar

MakeFrame

MakeButton

MakeRadioButton

MakeTickBox

MakeEditBox

MakeListBox

MakeDDListBox

MakeOutputBox

MakeTabControlArray

1.202 Using FoxGUI with C++

Most of the documentation in this file assumes that you’re using C
rather than C++ and that your compiler is operating in C mode even if it
is capable of compiling C++ programs. However, it is possible to use
FoxGUI in a C++ program with some minor changes.

The first thing you have to do is define CPPSOURCE as follows before you
include FoxGUI.h in your code:

#define CPPSOURCE
#include "FoxGUI.h"

This modifies some of the prototypes of the FoxGUI functions to ensure
that no C++ name mangling occurs for the FoxGUI functions.

Any functions which are callbacks for FoxGUI functions should be defined
with using extern "C" e.g.

extern "C" int MyWinEventFn(GuiWindow *gw, int event, int x, int y, void * ←↩
DropData)

{
// My code.

}

If you prefer, you can use EXTC which is defined in FoxGUI.h.

foxgui 192 / 203

1.203 What’s new in release 5.1?

New features in release 5.1

* Added the
GetModeSize
function to get the width and height of a display.

* Added various flags to the
GuiMessage
function to support icons in the

message.

* Added the function
WriteText
which allows you to write text directly to

a window without creating an outputbox.

* Modified
OpenGuiScreen
to make the new screen public if PubName is not

NULL. It is no-longer necessary to pass the flag GS_PUBLIC.

* Added function
ClonePublicScreen
to clone a public screen

(requires V36).

* Added function
GetDefaultFontCopy
which can be used to get a copy

of a screens default font.

* Added function
GetScreenDetails
to get the details of a public

screen (requires V36).

* Added S_FONT_SENSITIVE flag for output boxes and buttons. Output
box/button width/height is set according to font size and caption.
Buttons with this flag set do not resize when in a resizable window
(although they do still move). Output boxes DO still resize because
their contents may change and so resizing may still be important.

* Changed the following macros into functions
GetOutputBoxID

,
SetPreText

,

SetPostText
,
WinPrint

,
WinTab

,
WinPrintTab

,
WinPrintCol

,
WinShowCursor

,

WinHideCursor

foxgui 193 / 203

,
WinClear

,
WinHome

,
WinBlankToEOL

,
WinWrapOn

,
WinWrapOff

,

GetEditBoxID
,
SetDDListBoxText

,
GetDDListBoxText

,
GetDDListBoxID

.

Bug fixes in release 5.1

* Fixed bug in
MakeFrame
which could cause a crash during drag/drop

operations if you had not specified your own drag pointer.

* Modified the function
MakeOutputBox
to take a void* instead of a

Widget*. This prevents you from having to cast parent objects as
widgets when using strict compiler options or when compiling using C++.

1.204 What’s new in release 5.0?

New features in release 5.0

The main difference between release 4.7 and release 5.0 is that release 5.0
is implemented as a shared library whereas all previous releases were
implemented as a link library. In order to make the change from a link
library to a shared library I had to reduce the number of parameters to
many of the FoxGUI functions. This is because the easiest way to pass
parameters into a shared library is in registers and there are a limited
number of registers which can be used for this purpose.

Rather than simply remove parameters from each function until there were
enough registers to go around (which would have worked but would have made
FoxGUI even more inconsistent than it already was) I decided to aim for
some consistency. This means that in some cases the number of parameters
to a function has decreased further than necessary, simply to remain
consistent with other functions. I hope that after the initial
inconvenience of making quite large changes to your old FoxGUI source code
you’ll agree that this was a better approach.

foxgui 194 / 203

The changes are listed in detail below.

* Functions which create controls and took a font as a parameter no-longer
take a font parameter. Instead, the function

SetDefaultFont
can

be used to set the default font to be used when creating controls. This
works for all controls except edit boxes which always use the screen
font (this is standard Amiga behaviour).

* Functions which create controls and took the border colour, the text
colour and the background colour as parameters no-longer take these
three parameters. Instead, the function

SetDefaultCols
can

be used to set the default colours to be used when creating controls.

* Functions which create controls and took pre-text and post-text as
parameters no-longer take these parameters. Instead, the functions

SetPreText
and
SetPostText
can be used.

* The functions MakeTickBox and MakeRadioButton no-longer take a caption
parameter or accept the flags BG_CAPTION_LEFT or BG_CAPTION_RIGHT.
Instead, the functions

SetPreText
and
SetPostText

can be used.

* The function GetEditBoxFloat has been replaced with the function

GetEditBoxDouble
.

* The function SetEditBoxFloat has been replaced with the function

SetEditBoxDouble
.

* The function SetOutputBoxFloat has been replaced with the function

SetOutputBoxDouble
.

* The function SetListBoxTabStops has been replaced with the function

SetListBoxTabStopsArray
.

* The functions
MakeFrame

,
MakeListBox
and
MakeTreeControl
no-longer take

a DragPointer as a parameter. The functions
SetFrameDragPointer

,

foxgui 195 / 203

SetListBoxDragPointer
and
SetTreeControlDragPointer
respectively can be

used after creating your frame, list box or tree control if you want to
specify your own drag pointer. The flags LB_DRAGIMAGE, TC_DRAGIMAGE and
FM_DRAGIMAGE are no-longer required and have been removed.

* The function MakeTabControl has been replaced with the function

MakeTabControlArray
.

* The function InitGui has been removed. The initialisation that used to
be performed in this function is now done by the library when you open
it with the OpenLibrary command. If you wish to use safe memory
allocations (this used to be a flag which was passed to InitGui) you can
now do so by calling the function

UseSafeMallocs
immediately after

you open the FoxGUI library. If you do not call UseSafeMallocs then
fast memory allocations are used.

* The function EndGui has been removed. The cleaning up that used to be
done by EndGui is now done when your application calls CloseLibrary to
close the FoxGUI library.

* The function
OpenGuiWindow
no-longer takes a pointer to a close

function. Instead close is handled by the event function along with the
other events.

* The HiCol parameter has been removed from the function
OpenGuiWindow

.
Windows no-longer have a highlight colour and the macro WinPrintHi has
also been removed. Use

WinPrintCol
instead.

* The colour parameters have been removed from the function

ShowFileRequester
which now uses the default Gui pen colours which can

be set with the function
SetDefaultCols

.

* The colour parameters have been removed from the function

ShowDisplayList
which now uses the default Gui pen colours which can

be set with the function
SetDefaultCols

.

* The colour parameters have been removed from the function

GuiMessage
which now uses the default Gui pen colours which can

be set with the function
SetDefaultCols

.

* The parameters MinWidth and MinHeight have been removed from the

foxgui 196 / 203

function
OpenGuiWindow

. These are replaced by the more
versatile function

SetWindowLimits
.

* The function
GuiTextLength
now uses the default font if no font is

specified.

* Added the function
EnableM
to replace the functions EnableAllButtons,

EnableWinButtons, EnableAllFrames, EnableWinFrames,
EnableWinDDListBoxes, EnableAllDDListBoxes, EnableWinEditBoxes,
EnableAllEditBoxes, EnableAllListBoxes, EnableWinListBoxes and
EnableEverything which have been removed.

* Added the function
DisableM
to replace the functions DisableAllButtons,

DisableWinButtons, DisableAllFrames, DisableWinFrames,
DisableWinDDListBoxes, DisableAllDDListBoxes, DisableWinEditBoxes,
DisableAllEditBoxes, DisableAllListBoxes, DisableWinListBoxes and
DisableEverything which have been removed.

* Added the function
DestroyM
to replace the functions DestroyAllButtons,

DestroyWinButtons, DestroyWinTabControls,DestroyAllTabControls,
DestroyAllFrames, DestroyWinFrames,DestroyAllRadioButtons,
DestroyWinRadioButtons, DestroyWinTickBoxes,DestroyAllTickBoxes,
DestroyAllDDListBoxes, DestroyWinDDListBoxes,DestroyAllOutputBoxes,
DestroyWinOutputBoxes, DestroyAllListBoxes,DestroyWinListBoxes,
DestroyAllEditBoxes, DestroyWinEditBoxes, DestroyAllTimers,
CloseScrWindows, CloseAllWindows and CloseAllGuiScreens which have been
removed.

* A new parameter InitialValue has been added to the function

MakeOutputBox
which sets the initial value of the text

in the output box.

* The functions DestroyButton, DestroyTabControl, DestroyFrame,
DestroyRadioButton, DestroyTickBox, DestroyDDListBox, DestroyEditBox,
DestroyOutputBox, DestroyListBox, DestroyProgressBar, DestroyTimer,
CloseGuiWindow and CloseGuiScreen have been removed. Use the function

Destroy
instead.

* The functions StoreDDListBoxStatus and RestoreDDListBoxStatus have been
removed.

* The functions StoreEveryStatus and RestoreEveryStatus have been
removed.

* The functions StoreEditBoxStatus and RestoreEditBoxStatus have been
removed.

* The functions StoreButtonStatus and RestoreButtonStatus have been
removed.

* The functions EnableRadioButton, EnableTickBox, EnableFrame,
EnableButton, EnableDDListBox, EnableEditBox, EnableListBox and

foxgui 197 / 203

EnableTabControl have been removed. Use the function
EnableControl

instead.

* The functions DisableRadioButton, DisableTickBox, DisableFrame,
DisableButton, DisableDDListBox, DisableEditBox, DisableListBox and
DisableTabControl have been removed. Use the function

DisableControl
instead.

Bug fixes in release 5.0

* Fixed bug which caused GuiMessage to crash if the message was an empty
string.

1.205 What’s new in release 4.7?

New features in release 4.7

* New flags GW_DISKIN and GW_DISKOUT can be passed to the
OpenGuiWindow

function if you want your window to respond to disks being ←↩
inserted and

removed.

* The function ReplaceTCItem has been modified so that it can be passed
the return value from the function TCItemText on the same item without
crashing. This gives you an easy way to keep the text of the item the
same but with a different image.

Bug fixes in release 4.7

* Fixed bug which caused memory scribble when ReplaceTCItem was called for
an item not currently visible due to it’s parent folder being closed.

* Fixed many bugs in RemoveItem.

1.206 What’s new in release 4.6?

New features in release 4.6

* The functions
GuiTextLength
and
ReplaceTCItem

* The flags TC_REHILIGHT_ON_SCROLL and LB_REHILIGHT_ON_SCROLL to ←↩
modify

the way list boxes and tree controls rehilight when scrolling them.

Bug fixes in release 4.6

None.

foxgui 198 / 203

1.207 What’s new in release 4.5?

New features in release 4.5

* Tree Control

Bug fixes in release 4.5

* Fixed list box bug which made it impossible to select items at the
bottom of the list box if the list box had titles.

* Fixed bug which caused dragging to start if you double clicked on an
item in a list box which had been opened with the LB_DBLCLICK and
LB_DRAG flags.

* Fixed list box bug which caused a single click on an item to be treated
as a double-click if it immediately followed a successful double-click.

1.208 What’s new in release 4.4?

New features in release 4.4

* Frames can now be enabled and disabled using the functions EnableFrame,
DisableFrame, EnableAllFrames, DisableAllFrames, EnableWinFrames,
DisableWinFrames, EnableControl and DisableControl.

* New flags FM_BORDERLESS and FM_DRAGOUTLINE added for frames, allowing
the creation of borderless frames and frames which show their outline as
they are dragged.

* GetModeName function added to get the name of a screen mode from the
display database.

* It is now possible to create a tab control with only one tab (though why
you would want to do so I’m not sure!) Previously the function failed
unless at least two were specified.

* SetTickBoxValue function added.

* The look of list boxes with titles has been dramatically improved. The
titles are now drawn in a separate bevel above the bevel containing the
items.

* Tabbed listboxes have been fixed so that text in a column is truncated
before it encroaches on the space of the next column. Unfortunately
this has caused a speed reduction when scrolling tabbed listboxes.

* InsertListBoxItem function added to allow better manipulation of items
in listboxes.

* It is now possible to unhilight a listbox by passing 0 as the item
number to SetListBoxHiNum.

* The NoLines function has been modified to fit in with the new look for
listboxes. Previously it returned the number of lines available in a
listbox. Those lines could be used for titles or items. Now it returns
the space available for showing items.

Bug fixes in release 4.4

foxgui 199 / 203

* Fixed bug in MakeFrame which could incorrectly positioned frame captions.

* Fixed bug which could cause a crash if a windows event function destroyed
the source window when a frame was dropped in it.

* Fixed bug which stopped bitmaps from being attached to frames if the
frame wasn’t created with the FM_LBUT flag.

* Fixed bug which caused the whole image to be shown if a button or frame
containing a user-clipped image was resized.

* Fixed bug which caused vertical scrollers on listboxes to be created
before they were necessary.

* Fixed crash when creating a radio button with no caption.

Errors in this documentation which have been corrected.

* The documentation for the function ListColumnText incorrectly stated that
the leftmost column is column 1 - it is 0.

* The documentation for the function SetListBoxHiNum contained an error in
the example code.

1.209 What’s new in release 4.3?

Important note for users of FoxGUI 4.2

If you have been using FoxGUI 4.2, when you upgrade to 4.3 you will need to
make some changes to your code. The functions

ShowFileRequester
and
OpenGuiWindow
have had major revisions and your code will need to

be modifed accordingly.

New features in release 4.3

* A Cursor event has been added for list boxes. You can now specify a
function to be called when the up and down cursor keys are used to
select an item. See

MakeListBox
.

* Added list box functions to find items (
FindListText

),
individually replace items (

ReplaceListBoxItem
), get

the text of a specified column (
ListColumnText

) and set
the hilighted element (

SetListBoxHiElem
).

* If a list box is tabbed, the tabs now move if the list box resizes.

* It is now possible to create backdrop windows with
OpenGuiWindow

.

* Callback functions can now be called when a GuiWindow is moved, resized
or activated by the user (see

foxgui 200 / 203

OpenGuiWindow
).

* Added functions to modify and enquire about the state of check-mark menu
items (

IsMenuChecked
and
SetMenuChecked

).

* Added C++ compatability (see
Using FoxGUI with C++

).

* Reduced the number of parameters required by the
ShowFileRequester

function.

* Added functions for handling display modes and creating lists of
available display modes (

GetNextAvailableDisplayMode
and

ShowDisplayList
).

Bug fixes in release 4.3

* Fixed default font selection for list boxes. If no font is specified,
the list box will inherit the font used by the parent screen.

* Fixed bug in Destroy() which could cause crashes when destroying
GuiWindows.

1.210 What’s new in release 4.2?

New features in release 4.2

* Drag/Drop functionality has been added to windows, frames and listboxes.
To accomodate these changes, various function prototypes have changed
slightly including the functions MakeFrame, MakeListBox and
OpenGuiWindow.

* A double click-event is now available for list boxes. You can now
specify a function to call if the user double-clicks on an item in a
list box control.

* Other improvements to list boxes: They automatically get a vertical
scroller when more items are added than can be shown in the list and
they automatically get a horizontal scroller when items are added which
are too long to be shown in full.

Bug fixes in release 4.2

* If a frame was created without specifying the FM_LBUT flag then right
mouse-button clicks on the frame would not be detected and the frame’s
title (if it had one) would appear above and to the left of the frame
instead of in the centre. This is now fixed.

foxgui 201 / 203

1.211 What’s new in release 4.1?

New features in release 4.1

* Added the function SetGuiPensFromPubScreen which sets the gui pens to
the values used by a specified public screen.

* Tab controls now have rounded corners.

Bug fixes in release 4.1

* The "far" directive in foxconsole.h has been replaced with "__far" for
ANSI compliance.

* A bug in the way that drop-down list boxes were destroyed and which could
have caused the machine to crash if the list box had a child or if the
list box was associated has been fixed.

* The descriptions of the parameters detail and Btext were incorrect for
the function GuiMessage as described in this documentation. This has
been corrected.

1.212 What’s new in release 4.0?

New features in release 4.0

* Recompiled all of the code with SAS/C 6.51. The code now requires
sc.lib and scm.lib to be linked with it rather than the old lc.lib and
lcm.lib which weren’t compatible with newer versions of the compiler.
This should allow far more people to make use of FoxGUI.

* The ability to add your own intuition gadgets to FoxGUI windows or to
your own windows within a FoxGUI program.

Bug fixes in release 4.0

* If the cursor keys were used to scroll list boxes then hidden scrollable
list boxes would also be redrawn. This is now fixed.

* If two listboxes in different frames of the same tab control overlapped
then it was impossible to select items in one of the list boxes by
clicking in the overlapping region. This is now fixed.

* It is no-longer possible for buttons in GuiMessage windows to overlap.

1.213 What’s new in release 3.0?

New features in release 3.0

* Tab controls.

* Timer controls.

* All controls can be hidden and shown.

* Custom borders in buttons and frames are now resized when the button or
frame resizes.

* Frames and tab controls can now be used as holders for other controls.

* The parameter list for the function SetOutputBoxCols has changed
slightly.

* The way that list boxes work has been slightly improved.

foxgui 202 / 203

* New flags have been added to create clear edit boxes and drop-down list
boxes.

* A whole new set of generic functions which work on any control type have
been added. The functions are: Hide, Show, DisableControl,
EnableControl, Destroy and GetWindow.

* A new function RemoveMenuItem has been added.

* Enhancements have been made to the GuiMessage function.

Bug fixes in release 3.0

* The function TickBoxValue always returned FALSE no matter what the
actual value was. This has been fixed.

1.214 What’s new in release 2.0?

New features in release 2.0

* Much better screen support (Interlace, new screen modes etc).

* Windows can be resized.

* All controls are capable of stretching, shrinking and moving to fit the
new bounds of resized windows.

* ILBM images can be loaded, drawn on windows and attached to buttons and
frames (either clipped or scaled to fit exactly).

* Tick boxes can be clear.

* Pop-up list boxes and sub drop-down list boxes can be made to calculate
the necessary width for you so that you don’t have to work it out
yourself. This is useful if you don’t know what font will be in use.

Bug fixes in release 2.0

* Text in frames, buttons and output boxes is now clipped to fit.
Previously it would often overflow out of the control. If the control
is resized (due to a window resizing) then the caption is reclipped.

* On an A500, if a long item was selected in a drop-down list box,
selecting another, shorter item would sometimes leave the last
character of the previous text behind. This is now fixed.

* If you don’t want a caption in a button or frame you can now pass NULL
for the name parameter. Previously you had to use an empty string ("").

* The SetEditBoxFocus() function used to fail if another string gadget
(i.e. another edit box or drop-down list box) was active. This is now
fixed.

* There were various bugs associated with font handling which are now
fixed.

1.215 ... macro

Macro prototype:

Macro definition:

Description:

foxgui 203 / 203

Parameters:

Returns:

See also:

Warnings on the use of macros

1.216 ... function

Function prototype:

Description:

Parameters:

Returns:

Known bugs:

None.

See also:

	foxgui
	FoxGUI Documentation
	Drag/Drop support in FoxGUI applications
	Multi-threading in FoxGUI applications
	Adding your own gadgets to FoxGUI
	Important Notice.
	Introduction to FoxGUI
	FoxGUI System Requirements
	FoxGUI compatibility
	Format of a FoxGUI program
	Suggestions?
	FoxGUI Bugs
	FoxGUI Wish list
	FoxGUI functions
	FoxGUI Image functions
	LoadBitMap function
	ShowBitMap function
	HideBitMap function
	FreeGuiBitMap function
	ScaleBitMap function
	RedrawBitMap function
	AttachBitMapToControl function
	ScreenColoursFromILBM function
	FoxGUI Progress Bar functions
	MakeProgressBar function
	SetProgress function
	SetProgressMax function
	FoxGUI Frame functions
	MakeFrame function
	SetFrameDragPointer function
	FoxGUI Timer functions
	AddTime function
	MakeTimer function
	PauseTimer function
	SetTime function
	StartTimer function
	StopTimer function
	UnpauseTimer function
	FoxGUI Screen functions
	ClonePublicScreen function
	GetScreenDetails function
	OpenGuiScreen function
	GetModeName function
	GetModeSize function
	GetNextAvailableDisplayMode function
	ShowDisplayList function
	FoxGUI Window functions
	OpenGuiWindow function
	SetFName function
	SetPath function
	ShowFileRequester function
	SleepPointer function
	UpdateFList function
	WakePointer function
	SetWindowLimits function
	WinBlankToEOL function
	WinClear function
	WinHideCursor function
	WinHome function
	WinPrint function
	WinPrintCol function
	WinPrintTab function
	WinShowCursor function
	WinTab function
	WinWrapOff function
	WinWrapOn function
	FoxGUI Menu functions
	AddMenu function
	AddMenuItem function
	AddSubMenuItem function
	ClearMenus function
	DisableMenu function
	DisableMenuItem function
	DisableWinMenus function
	EnableMenu function
	EnableMenuItem function
	EnableWinMenus function
	IsMenuChecked function
	RemoveMenuItem function
	SetMenuChecked function
	SetWinMenuFn function
	ShareMenus function
	FoxGUI Button functions
	MakeButton function
	FoxGUI Boolean Gadget functions
	ActiveRadioButton function
	MakeRadioButton function
	SetTickBoxValue function
	TickBoxValue function
	MakeTickBox function
	FoxGUI Editbox functions
	GetEditBoxDouble function
	GetEditBoxInt function
	GetEditBoxText function
	MakeEditBox function
	RefreshEditBox function
	SetEditBoxCols function
	SetEditBoxDP function
	SetEditBoxDouble function
	SetEditBoxFocus function
	SetEditBoxInt function
	SetEditBoxText function
	GetEditBoxID function
	FoxGUI Tree Control functions
	AddItem function
	ClearTreeControl function
	CloseItem function
	FindTreeItem function
	ItemData function
	ItemIsOpen function
	MakeTreeControl function
	SetTreeControlDragPointer function
	OpenItem function
	RemoveItem function
	ReplaceTCItem function
	SetTreeControlHiItem function
	TCHiItem function
	TCHiText function
	TCItemText function
	FoxGUI Listbox functions
	AddListBoxItem function
	AddListBoxTitle function
	ClearListBoxItems function
	ClearListBoxTabStops function
	ClearListBoxTitles function
	FindListText function
	HiElem function
	HiNum function
	HiText function
	InsertListBoxItem function
	ListBoxRefresh function
	ListColumnText function
	MakeListBox function
	SetListBoxDragPointer function
	NoLines function
	NoTitles function
	ReplaceListBoxItem function
	SetListBoxHiElem function
	SetListBoxHiNum function
	SetListBoxTabStopsArray function
	SetListBoxTopNum function
	SortListBox function
	TopNum function
	FoxGUI Drop-Down Listbox functions
	AddToDDListBox function
	AssociateDDListBox function
	ClearDDListBox function
	MakeDDListBox function
	MakeSubDDListBox function
	RemoveFromDDListBox function
	SetDDListBoxPopup function
	SortDDListBox function
	GetDDListBoxID function
	GetDDListBoxText function
	SetDDListBoxText function
	FoxGUI Outputbox functions
	MakeOutputBox function
	SetOutputBoxCols function
	SetOutputBoxDP function
	SetOutputBoxDouble function
	SetOutputBoxInt function
	SetOutputBoxText function
	GetOutputBoxID function
	FoxGUI Tab Controls
	MakeTabControlArray function
	TabControlFrame function
	FoxGUI Miscelaneous functions
	CheckMessages function
	Destroy function
	DisableControl function
	DrawLines function
	EnableControl function
	GetWindow function
	GuiLoop function
	GuiMalloc function
	GuiMessage function
	GuiTextLength function
	Hide function
	IntuiWindow function
	LibVersion function
	RegisterGadget function
	SetDelay function
	SetGuiPens function
	SetGuiPensFromPubScreen function
	SetPeriod function
	SetPreText function
	SetPostText function
	Show function
	UnRegisterGadget function
	WriteText function
	GuiGetLastErr function
	GuiFree macro
	SetDefaultCols function
	SetDefaultFont function
	EnableM function
	GetDefaultFontCopy function
	DisableM function
	DestroyM function
	UseSafeMallocs function
	Warnings and notes on the use of macros
	The GUI_END and GUI_CONTINUE flags
	The S_AUTO_SIZE flag
	Using FoxGUI with C++
	What's new in release 5.1?
	What's new in release 5.0?
	What's new in release 4.7?
	What's new in release 4.6?
	What's new in release 4.5?
	What's new in release 4.4?
	What's new in release 4.3?
	What's new in release 4.2?
	What's new in release 4.1?
	What's new in release 4.0?
	What's new in release 3.0?
	What's new in release 2.0?
	... macro
	... function

